<span>1.40 x 10^5 kilograms of calcium oxide
The reaction looks like
SO2 + CaO => CaSO3
First, determine the mass of sulfur in the coal
5.00 x 10^6 * 1.60 x 10^-2 = 8.00 x 10^4
Now lookup the atomic weights of Sulfur, Calcium, and Oxygen.
Sulfur = 32.065
Calcium = 40.078
Oxygen = 15.999
Calculate the molar mass of CaO
CaO = 40.078 + 15.999 = 56.077
Since 1 atom of sulfur makes 1 atom of sulfur dioxide, we don't need the molar mass of sulfur dioxide. We merely need the number of moles of sulfur we're burning. divide the mass of sulfur by the atomic weight.
8.00 x 10^4 / 32.065 = 2.49 x 10^3 moles
Since 1 molecule of sulfur dioxide is reacted with 1 molecule of calcium oxide, just multiply the number of moles needed by the molar mass
2.49 x 10^3 * 56.077 = 1.40 x 10^5
So you need to use 1.40 x 10^5 kilograms of calcium oxide per day to treat the sulfur dioxide generated by burning 5.00 x 10^6 kilograms of coal with 1.60% sulfur.</span>
Hey there!
Speed and velocity both:
1) Measure how fast something is moving
2) Both measured in miles per hour, meters/second, etc (rates)
However, there's a prime difference:
Different because:
1) Velocity is speed, but in a certain direction
2) Velocity is a vector
3) Velocity can be positive <em>or</em> negative, unlike speed.
I added another just in case you had a preference :)
Hope this helps!
Answer:
121 K
Explanation:
Step 1: Given data
- Initial volume (V₁): 79.5 mL
- Initial temperature (T₁): -1.4°C
- Final volume (V₂): 35.3 mL
Step 2: Convert "-1.4°C" to Kelvin
We will use the following expression.
K = °C + 273.15 = -1.4°C + 273.15 = 271.8 K
Step 3: Calculate the final temperature of the gas (T₂)
Assuming ideal behavior and constant pressure, we can calculate the final temperature of the gas using Charles' law.
V₁/T₁ = V₂/T₂
T₂ = V₂ × T₁/V₁
T₂ = 35.3 mL × 271.8 K/79.5 mL = 121 K
Answer:
The Mitochondria
Explanation:
Mitochondria are membrane-bound cell organelles that generate most of the energy required to power the cell's organic chemistry reactions. Energy created by the mitochondria is kept in a tiny molecule known as adenosine triphosphate (ATP).
Answer:
<h3>The answer is 32 g/cm³</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 768 g
volume = 24 cm³
We have

We have the final answer as
<h3>32 g/cm³</h3>
Hope this helps you