Answer:
1.728 mol /(L*min)
Explanation:
Hello,
In the attached photo, you'll find the numerical procedure for your question.
- Take into account that the negative sign is eligible for reagents and positive for products.
Best regards!
Answer:
Chelate, any of a class of coordination or complex compounds consisting of a central metal atom attached to a large molecule, called a ligand, in a cyclic or ring structure. An example of a chelate ring occurs in the ethylenediamine-cadmium complex:
The ethylenediamine ligand has two points of attachment to the cadmium ion, thus forming a ring; it is known as a didentate ligand. (Three ethylenediamine ligands can attach to the Cd2+ ion, each one forming a ring as depicted above.) Ligands that can attach to the same metal ion at two or more points are known as polydentate ligands. All polydentate ligands are chelating agents.
Chelates are more stable than nonchelated compounds of comparable composition, and the more extensive the chelation—that is, the larger the number of ring closures to a metal atom—the more stable the compound. This phenomenon is called the chelate effect; it is generally attributed to an increase in the thermodynamic quantity called entropy that accompanies chelation. The stability of a chelate is also related to the number of atoms in the chelate ring. In general, chelates containing five- or six-membered rings are more stable than chelates with four-, seven-, or eight-membered rings.
Explanation:
Just 2 valence electrons.
Hydrogen already has one to start with, as well. With the exception of hydrogen and helium, all other atoms need 8 valence e-
Shape
A gas is shapeless all other things being equal. It will, if put in a container, occupy every part of the container.
A liquid could also be thought of shapeless. If put in a container, it need not occupy the entire container. It will occupy as much as its calculated volume will permit it to occupy.
A solid will only occupy its original shape.
Volume
A gas will occupy whatever container it is put in within limits. You cannot put a 72 mols of gas in a mm^3 container without some amazing ability to apply a lot of pressure.
A liquid will occupy a volume determined by its density and mass. In general liquids cannot be compressed.
Whatever volume a solid has to start with, it will retain that volume all other things being equal.
This is actually very hard to describe.