Answer:
130 Liters
Explanation:
if 1 mol is 22.4 L, then 5.8 mol is 130 L (129.92 but use sig figs)
The number of mole sulphuric acid in each mL of solution is 0.0183 mol/mL.
<h3>What is concentration?</h3>
- Concentration in chemistry is calculated by dividing a constituent's abundance by the mixture's total volume.
- Mass concentration, molar concentration, number concentration, and volume concentration are four different categories of mathematical description.
- Any type of chemical mixture can be referred to by the term "concentration," however solutes and solvents in solutions are most usually mentioned.
- There are different types of molar (quantity) concentration, including normal concentration and osmotic concentration.
<h3>How is concentration determined?</h3>
- Subtract the solute's mass from the total volume of the solution. Using m as the solute's mass and V as the total volume of the solution, write out the equation C = m/V.
- To get the concentration of your solution, divide the mass and volume figures you discovered and plug them in.
Learn more about concentration here:
brainly.com/question/13872928
#SPJ4
Quantity of K2S m = 0.105 m
Number of ions i = 2(K) + 1(S) = 3
Freezing point depression constant of water Kf = 1.86
delta T = i x m x Kf = 3 x 0.105 x 1.86 = 0.586
Freezing point = 0 - 0.586 = 0.586 C
Boiling point constant of water Kb = 0.512
delta T = i x m x Kb = 3 x 0.105 x 0.512 = 0.161
Boiling point = 100 + 0.161 = 100.161 C
Answer:

Explanation:
The correct answer of this questions is 38°c
Option B is correct,
With increase in concentration the density of reactants increases and the system becomes more crowded, the greater the reactants will come in contact with each other and collisions occur. If collision is in proper orientation and has optimum energy then its fruitful and yields product. So, the greater the number of reactants, the greater will be the chances of collision and the greater will be the production of products per unit time and hence, greater is the rate of reaction.