Descriptive or Correlational. hope this helps
Answer:
[Co(NH3)5CO3]I3
Explanation:
The naming of coordination compounds follows certain rules specified by IUPAC. Usually, the name of the complex makes it quite easy to deduce its structure.
"Pentaamine" means that there are five NH3 ligands as shown in the structure. The ligand carbonato is CO3^2-. It has no prefix attached to it in the IUPAC name of the complex hence there is only one carbonato ligand present(recall that the complex has a coordination number of six). I did not enclose it within parenthesis as required in the question.
Lastly the III that appeared after the metal name "cobalt" shows its oxidation state. The iodide counter ions must then be 3 in number in order to satisfy this primary valency of the metal hence the inclusion of I3 in the structure of the complex.
<span>The answer to question 2 is C. A magnifying glass is an example of a plano-convex lens, where one side of the lens is flat and the other is a convex curve. The answer to question 3 is either B or C. A converging lens is curved on both sides and so the rays of light coming out of it converge at a point, which is known as the focal point. When the object is inside the focal point, the image is real and inverted. If it is inside the focal point, the image is virtual and upright. Therefore the image in this question will be upright. The focal length is the distance between the image that is being magnified and the centre of the magnifying lens. A real image can only be formed when the object is further away from the lens than the focal length. Therefore, in this question, the image is virtual, as the object is closer to the lens than the focal length. The answer to question 4 is D because the index of refraction cannot be less than 1. The answer to question 5 is D because only concave mirrors can produce real images; other types produce virtual images. For question 6, the answer is D. In the rainbow, each of the colours refracts at a slightly different angle; red has the smallest refractive index and violet the largest. Of the options, orange is closest to red. For question 12, A is the answer. A higher operating temperature is not a reason fluorescent lamps are better than incandescent lamps because they have a lower operating temperature. Question 15: all of these are characteristics of different electromagetic waves. For question 18, B is true - special care must be taken when low illuminance is required to reduce glare. The answer to question 19 is B - a compound microscope makes use of two lenses. For question 20, the answer is 5 meters away. The illuminance (E) is equal to light intensity (I) divided by the square distance from the light source (d). Therefore, 4 = 100/d squared. To switch this around, d squared is equal to 100/4 = 25. Then find the square root of 25, which is 5.</span>
To determine what gas is this, we use Graham's Law of Effusion where it relates the rates of effusion of gases and their molar masses. We do as follows:
r1/r2 = √(M2 / M1)
Let 1 be the the unkown gas and 2 the H2 gas.
r1/r2 = 0.225
M2 = 2.02 g/mol
0.225 = √(2.02 / M1)
M1 = 39.90 g/mol
From the periodic table of elements, most likely, the gas is argon.