Answer:
c. The reaction will proceed rapidly from left to right.
Explanation:
The variation of the free Gibbs energy doesn't tell anything about the speed of reaction.
On the other hand, when ΔGo is negative: the reaction is spontaneous, thermodynamically favourable, and the products are more stable than the reactants
Answer:
Volcanologists use many different kinds of tools including instruments that detect and record earthquakes (seismometers and seimographs), instruments that measure ground deformation (EDM, Leveling, GPS, tilt), instruments that detect and measure volcanic gases (COSPEC), instruments that determine how much lava is moving underground (VLF, EM-31), video and still cameras, infrared cameras, satellite imagers, webcams, etc!
Explanation:
I HOPE IT HELPED
Answer: (C) conservation of matter
Solution: Law of conservation of matter or mass states that' total mass of the reactants should always be equal to the total mass of the product that is the total mass is remained conserved in a chemical reaction.
A balanced chemical equation always follow this law.
For example:

Mass of hydrogen = 1 g/mol
Mass of Oxygen = 16 g/mol
Total mass on the reactants = 2(2×1)+(2×16)= 36g/mol
Total mass on the product side = 2[(2×1) +16] = 36 g/mol
As,
Mass on reactant side = Mass on the product side
Therefore, a balanced chemical reaction follows Law of Conservation of mass.
D. Matter and energy are the same.
Osmosis and diffusion are related processes that display similarities. Both osmosis and diffusion equalize the concentration of two solutions. Both diffusion and osmosis are passive transport processes, which means they do not require any input of extra energy to occur. In both diffusion and osmosis, particles move from an area of higher concentration to one of lower concentration. Osmosis and facilitated diffusion both account for movement of molecules from a region of high concentration to a region of low concentration.