1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nonamiya [84]
3 years ago
10

A ball is dropped from a height of 180m- Calculate the velocity of the ball when it strikes the ground

Physics
2 answers:
gayaneshka [121]3 years ago
6 0

Answer:

6s , 60mls

Explanation:

hope this helps love

krek1111 [17]3 years ago
4 0

Answer:

0m/s

Explanation:

When the object strikes the ground, it then becomes in uniform motion and when an object is in uniform motion, the velocity is 0

You might be interested in
The vector sum of the forces acting on the beam is zero, and the sum of the moments about the left end of the beam is zero. (a)
Marysya12 [62]

This question is incomplete, the complete question is;

The vector sum of the forces acting on the beam is zero, and the sum of the moments about the left end of the beam is zero.

(a) Determine the forces and and the couple

(b) Determine the sum of the moments about the right end of the beam.

(c) If you represent the 600-N force, the 200-N force, and the 30 N-m couple by a force F acting at the left end of the beam and a couple M, what is F and M?

Answer:

a)

the x-component of the force at A is A_{x} = 0

the y-component of the force at A is A_{y}  = 400 N

the couple acting at A is; M_{A} = 146 N-m

b)

the sum of the momentum about the right end of the beam is;  ∑M_{R}  = 0

c)

the equivalent force acting at the left end is; F = -400J ( N)

the couple acting at the left end is; M = - 146 N-m

Explanation:

Given that;

The sum of the forces acting on the beam is zero ∑f = 0

Sum of the moments about the left end of the beam is also zero ∑M_{L} = 0

Vector force acting at A, F_{A} = A_{x}i + A_{y}j

Now, From the image, we have;

a)

∑f = 0

F_{A} - 600j + 200j = 0i + 0j

A_{x}i + A_{y}j - 600j + 200j = 0i + 0j

A_{x}i + (A_{y} - 400)j = 0i + 0j

now by equating i- coefficients'

A_{x} = 0

so, the x-component of the force at A is A_{x} = 0

also by equating j-coefficient

A_{y} - 400 = 0

A_{y}  = 400 N

hence, the y-component of the force at A is A_{y}  = 400 N

we also have;

∑M_{L} = 0

M_{A}  - ( 30 N-m ) - ( 0.380 m )( 600 N ) + ( 0.560 m )( 200 N ) = 0

M_{A} - 30 N-m - 228 N-m + 112 Nm = 0

M_{A} - 146 N-m = 0

M_{A} = 146 N-m

Therefore, the couple acting at A is; M_{A} = 146 N-m

b)

The sum of the moments about right end of the beam is;

∑M_{R} = (0.180 m)(600N) - (30 N-m) - ( 0.56 m)(A_{y} ) + M_{A}

∑M_{R} = (108  N-m) - (30 N-m) - ( 0.56 m)(400 N ) + 146 N-m

∑M_{R} = (108 N-m) - (30 N-m) - ( 224 N-m ) + 146 N-m

∑M_{R}  = 0

Therefore, the sum of the momentum about the right end of the beam is;  ∑M_{R}  = 0

c)

The 600-N force, the 200-N force and the 30 N-m couple by a force F which is acting at the left end of the beam and a couple M.

The equivalent force at the left end will be;

F = -600j + 200j (N)

F = -400J ( N)

Therefore, the equivalent force acting at the left end is; F = -400J ( N)

Also couple acting at the left end

M = -(30 N-m) + (0.560 m)( 200N) - ( 0.380 m)( 600 N)

M = -(30 N-m) + (112 N-m) - ( 228 N-m))

M = 112 N-m - 258 N-m

M = - 146 N-m

Therefore, the couple acting at the left end is; M = - 146 N-m

7 0
2 years ago
Which experiment best shows water’s ability to act as a solvent? raise the temperature of water and record its boiling point. fr
IrinaVladis [17]
The vanishing of an ionic solid (like table salt) would be an example of acting like a solvent
8 0
2 years ago
Read 2 more answers
In which direction does a bag at rest move when a force of 20 newtons is applied from the right?
worty [1.4K]

Answer:

in the direction of the applied force

Explanation:

8 0
3 years ago
A motorcyclist accelerates from rest to 10 mi/hr. what is the change in velocity
gulaghasi [49]

The change in velocity is 10 mi/h (4.47 m/s)

Explanation:

The change in velocity of the motorcyclist is given by

\Delta v = v-u

where

v is the final velocity

u is the initial velocity

In this problem, we have

u = 0 (the motorbike starts from rest)

v = 10 mi/h

Therefore, the change in velocity is

\Delta v = 10 -0 = 10 mi/h

And keeping in mind that

1 mile = 1609 m

1 h = 3600 s

We can convert it into m/s:

\Delta v = 10 \frac{mi}{h} \cdot \frac{1609 m/mi}{3600 s/h}=4.47 m/s

Learn more about velocity:

brainly.com/question/5248528

#LearnwithBrainly

6 0
2 years ago
PLEASE HELP SEE PART 2 FOR MORE INFO
Angelina_Jolie [31]

Answer:

This question cannot be answered

Explanation:

This is a practical experiment which can only be done in person. Kindly go through the instructions and do the experiment carefully.

8 0
2 years ago
Other questions:
  • The vector quantity that defines the distance and direction between two positions. It is a change in your position.
    15·1 answer
  • What is the formula for volume using density and mass
    5·2 answers
  • delivery ladies is Shivam noted at the thundering sound of 6 second after the lightning was seen by him​
    10·2 answers
  • The energy efficiency of an incandescent light bulb (= the percentage of consumed power that is actually converted into radiated
    8·1 answer
  • A person is standing outdoors in the shade where the temperature is 17 °C. (a) What is the radiant energy absorbed per second by
    13·1 answer
  • If the velocity of blood flow in the aorta is normally about 0.32 m/s, what beat frequency would you expect if 4.40-MHz ultrasou
    12·1 answer
  • In its elemental state, carbon is available as:
    14·2 answers
  • What is the relationship between friction and velocity?
    14·2 answers
  • How is the gravitational force acting on a falling object calculated
    13·1 answer
  • An object of height 8.50 cm is placed 20.0 cm to the left of a converging lens with a focal length of 12.0 cm. Determine the ima
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!