^^^^^^^^^^^^^^^^^^^^^^^^^^^ is correct
The energy of a photon is given by:

where h is the Planck constant and f is the photon frequency.
We know the energy of the photon,

, so we can rearrange the equation to calculate the frequency of the photon:

And now we can use the following relationship between frequency f, wavelength

and speed of light c to find the wavelength of the photon:
Answer:
false
Explanation:
since it has seven valence electrons it means it's a non metal and non metals always gain electrons.
<span>Place a test charge in the middle. It is 2cm away from each charge.
The electric field E= F/Q where F is the force at the point and Q is the charge causing the force in this point.
The test charge will have zero net force on it. The left 30uC charge will push it to the right and the right 30uC charge will push it to the left. The left and right force will equal each other and cancel each other out.
THIS IS A TRICK QUESTION.
THe electric field exactly midway between them = 0/Q = 0.
But if the point moves even slightly you need the following formula
F= (1/4Piε)(Q1Q2/D^2)
Assume your test charge is positive and make sure you remember two positive charges repel, two unlike charges attract. Draw the forces on the test charge out as vectors and find the magnetude of the force, then divide by the total charge to to find the electric field strength:)</span>
<span>49N is the force needed to give a .25 kg arrow an acceleration of 196m/s2. F =ma ⇒ =( 0.25kg)(196m/s2) = 49N if the arrow is shot horizontally where the applied force is entirely in the x-direction.</span>