Answer:
25.8
Explanation:
Let's write the reaction between magnesium-phosphide and potassium:
Mg3P2 + K = Mg + K3P
And now let's balance this equation:
Mg3P2+6K=3Mg+2K3P
We see that the ratio of magnesium-phosphide and potassium is 1:6, which means that for every mole of magnesium-phosphide there need to be 6 moles of potassium.
Since we have 4.3 moles of Mg3P2, there need to be 6 • 4.3 = 25.8 moles of potassium.
Answer:
false
Explanation:
the energy causes the bonds to become looser
Answer:
3) NaCl.
Explanation:
<em>∵ ΔTf = iKf.m</em>
where, <em>i</em> is the van 't Hoff factor.
<em>Kf </em>is the molal depression freezing constant.
<em>m</em> is the molality of the solute.
<em>The van 't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass. </em>
<em></em>
- For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1.
<em>So, for sugar: i = 1.</em>
<em>∴ ΔTf for sugar = iKf.m = (1)(Kf)(2.0 m) = 2 Kf.</em>
<em></em>
- For most ionic compounds dissolved in water, the van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance.
For NaCl, it is electrolyte compound which dissociates to Na⁺ and Cl⁻.
<em>So, i for NaCl = 2.</em>
<em>∴ ΔTf for NaCl = iKf.m = (2)(Kf)(1.0 m) = 2 Kf.</em>
<em></em>
<em>So, the right choice is: 3) NaCl.</em>
<em></em>
the answer is c, more heat is being released.
Answer:
ummmmmmmmmmmmmmmm..mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
Explanation:
ummmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm.................... candyunicorns1999 has left the chat