Answer:
8.73 L
Explanation:
First, you need to convert grams to moles using the molar mass.
Molar Mass (N₂): 2(14.009 g/mol)
Molar Mass (N₂): 28.018 g/mol
12.2 grams N₂ 1 mole
---------------------- x ------------------------ = 0.435 moles N₂
28.018 grams
To find the volume, you need to use the Ideal Gas Law:
PV = nRT
In this equation,
-----> P = pressure (torr)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas constant (62.36 torr*L/mol*K)
-----> T = temperature (K)
After converting the temperature from Celsius to Kelvin, you can plug the given values into the equation.
P = 1132 torr R = 62.36 torr*L/mol*K
V = ? L T = 91 °C + 273.15 = 364.15 K
n = 0.435 moles
PV = nRT
(1132 torr)V = (0.435 moles)(62.36 torr*L/mol*K)(364.15 K)
(1132 torr)V = 9888.015
V = 8.73 L
Answer: There are several ways. The first that comes to mind is a pH meter. A pH electrode Is lowered into the solution, and (Assuming) the pH Meter has been properly calibrated, and the temperature of the solution is set to the calibration of the Meter, the pH can be read directly from an analogue scale or digital readout. Below 7 is acidic, 7 is Neutral, (like Pure Water), and over 7 is Alkaline, or Basic.
A useful, but less accurate method is the use of any number of “pH Indicator Solutions”, which are essentially a type of various colored dyes that change color within differing pH ranges. Usually, if the pH is unknown, a small amount of solution is removed from the container and tested separately - in a “well plate”, or similar method.
These types of dyes, or Indicator Solutions, can be dried upon strips of “pH indicator Paper”, which, depending upon the type can be very useful when carrying out more precisely arrived at pH tests like Titration.
Just to see if a solution is “Acid” or “Base”, Litmus paper is used; “a Red color shows Acidity, and a Blue color, a Base”; ergo, “An Acid Solution will turn Litmus Paper, Red”.
Answer:
pH = 4.57
Explanation:
pH = pKa + log ([OAc⁺]/[HOAc])
Ka(HOAc) 1.8 x 10⁻⁵ => pKa = -log(1.8 x 10⁻⁵) = 4.74
[OAc⁻] = 0.20M
[HOAc] = 0.30M
pH = 4.74 + log([0.20]/[0.30]) = 4.47 + (-0.17) = 4.57
They fit in by atomic mass and amount of valence electrons categorized in families
16 is C
17 is E
18 is B
19 is A
20 is D
hope this helps :)