We can answer the problem by Snell's Law:
Snell's law<span> (also known as </span>Snell<span>–Descartes </span>law<span> and the </span>law<span> of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.</span>
Answer:
The wave is traveling in the +x direction.
Explanation:
The equation of a wave is given by the formula as :

Here,
A is the amplitude of wave
is the phase of wave
is the angular frequency of the wave
We need to find the correct statement out of given options. The given equation can be rewritten as :

Here, the propagation constant is negative. So, the wave is moving in +x direction. Hence, the correct option is (a).
Answer:
This question appear incomplete
Explanation:
This question appear incomplete because of the absence of options. However, metamorphic rocks are rocks that are formed from other pre-existing rocks under heat and pressure (both are usually high), causing them to twist and melt together. Metamorphism simply means a change in form of something and that's what happens here also.
Say we have a cylinder
that has a height of dx, we see that the cylinder has a volume of: <span>
<span>Vcylinder = πr^2*h = π(5)^2(dx) = 25π dx
Then, the weight of oil in this cylinder is:
Fcylinder = 50 * Vcylinder = (50)(25π dx) = 1250π dx.
Then, since the oil x feet from the top of the tank needs to
travel x feet to get the top, we have:
Wcylinder = Force x Distance = (1250π dx)(x) = 1250π x dx.
<span>Integrating from x1 to x2 ft gives the total work to be: (x1
= distance from top liquid level to ground level; x2 = distance from bottom
liquid level to ground level)</span>
<span>W = ∫ 1250π x dx
<span>W = 1250π ∫ x dx
W = 625π * (x2 – x1)</span></span></span></span>
<span>x2 = 14 ft + 15 ft = 29 ft</span>
x1 = 14 ft + 1 ft = 15
ft
<span>
W = 625π * (29^2 - 15^2)
<span>W = 385,000π ft-lbs
= 1,209,513.17 ft-lbs</span></span>
Answer:
0.239 T
Explanation:
Applying,
F = Bvqsin∅................ Equation 1
Where F = magnetic force, B = magnetic Field, q = charge of a proton, v = velocity of proton, ∅ = angle between the velocity and the magnetic field.
make B the subject of the equation
B = F/(vqsin∅)................. Equation 2
From the question,
Given: F = 1.15×10⁻¹³ N, v = 3.0×10⁶ m/s, ∅ = 90°(perpendicular)
Constant: q = 1.602 x 10⁻¹⁹ C
Substitute into equation 2
B = 1.15×10⁻¹³ /(3.0×10⁶×1.602 x 10⁻¹⁹×sin90°)
B = 1.15×10⁻¹³/(4.806×10⁻¹³)
B = 0.239 T.
Hence the magnetic field = 0.239 T