1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viva [34]
3 years ago
12

W is the work done on the system, and K, U, and Eth are the kinetic, potential, and thermal energies of the system, respectively

. Any energy not mentioned in the transformation is assumed to remain constant; if work is not mentioned, it is assumed to be zero.
1. Give a specific example of a system with the energy transformation shown.
W→ΔEth

2. Give a specific example of a system with the energy transformation shown.

a. Rolling a ball up a hill.
b. Moving a block of wood across a horizontal rough surface at constant speed.
c. A block sliding on level ground, to which a cord you are holding on to is attached .
d. Dropping a ball from a height.
Physics
1 answer:
MArishka [77]3 years ago
7 0

Answer:

1) a block going down a slope

2) a) W = ΔU + ΔK + ΔE, b) W = ΔE, c)  W = ΔK, d) ΔU = ΔK

Explanation:

In this exercise you are asked to give an example of various types of systems

1) a system where work is transformed into internal energy is a system with friction, for example a block going down a slope in this case work is done during the descent, which is transformed in part kinetic energy, in part power energy and partly internal energy that is represented by an increase in the temperature of the block.

2)

a) rolling a ball uphill

In this case we have an increase in potential energy, if there is a change in speed, the kinetic energy also increases, if the change in speed is zero, there is no change in kinetic energy and there is a change in internal energy due to the stationary rec in the point of contact

 W = ΔU + ΔK + ΔE

b) in this system work is transformed into internal energy

      W = ΔE

c) There is no friction here, therefore the work is transformed into kinetic energy

    W = ΔK

d) if you assume that there is no friction with the air, the potential energy is transformed into kinetic energy

      ΔU = ΔK

You might be interested in
A 2.13-kg object on a frictionless horizontal track is attached to the end of a horizontal spring whose force constant is 5.00 N
ANTONII [103]

Answer:

17.54N in -x direction.

Explanation:

Amplitude (A) = 3.54m

Force constant (k) = 5N/m

Mass (m) = 2.13kg

Angular frequency ω = √(k/m)

ω = √(5/2.13)

ω = 1.53 rad/s

The force acting on the object F(t) = ?

F(t) = -mAω²cos(ωt)

F(t) = -2.13 * 3.54 * (1.53)² * cos (1.53 * 3.50)

F(t) = -17.65 * cos (5.355)

F(t) = -17.57N

The force is 17.57 in -x direction

5 0
3 years ago
TRUE OR FALSE! PLZ HELP
Ksju [112]

Answer:

True

Explanation:

Magnitude is the "value" the greater the value the greater the force is and vice versa

5 0
2 years ago
One mole of magnesium (6 × 1023 atoms) has a mass of 24 grams, as shown in the periodic table on the inside front cover of the t
natka813 [3]

This question involves the concepts of density, volume, and mass.

The approximate diameter of a magnesium atom is "3.55 x 10⁻¹⁰ m".

<h3>STEP 1 (FINDING MASS OF INDIVIDUAL ATOM)</h3>

It is given that:

Mass of one mole = 24 grams

Mass of 6 x 10²³ atoms = 24 grams

Mass of 1 atom = \frac{24\ grams}{6\ x\ 10^{23}\ atoms} = 4 x 10⁻²³ grams

<h3>STEP 2 (FINDING VOLUME OF A SINGLE ATOM)</h3>

\rho = \frac{m}{V}\\\\V=\frac{m}{\rho}

where,

  • \rho = density = 1.7 grams/cm³
  • m = mass of single atom = 4 x 10⁻²³ grams
  • V = volume of single atom = ?

Therefore,

V=\frac{4\ x\ 10^{-23}\ grams}{1.7\ grams/cm^3}

V = 2.35 x 10⁻²³ cm³

<h3>STEP 3 (FINDING DIAMETER OF ATOM)</h3>

The atom is in a spherical shape. Hence, its Volume can be given as follows:

V =\frac{\pi d^3}{6}\\\\d=\sqrt[3]{ \frac{6V}{\pi}}\\\\d=\sqrt[3]{ \frac{6(2.35\ x\ 10^{-23}\ cm^3)}{\pi}}

d = 0.355 x 10⁻⁷ cm = 3.55 x 10⁻¹⁰ m

Learn more about density here:

brainly.com/question/952755

7 0
2 years ago
Between a plate and the body of a bolt, the projected area is equal to the product of the bolt _______ and the plate _______.
Elan Coil [88]

Answer:

Projected area= Diameter of the bolt* thickness.

Explanation:

Between a plate and the body of a bolt, the projected area is equal to the product of the bolt _Diameter of the bolt______ and the plate ___thickness____.

Projected area= Diameter of the bolt* thickness.

Projected area is a 2-dimensional area measurement of a 3-dimensional body by projecting its surface on an arbitrary plane

8 0
3 years ago
Which segment represent slowing down
lakkis [162]

Answer:

A downward sloping line

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • What is the molecular geometry or of the molecular molecule
    12·1 answer
  • What is the best free energy source?<br> Nuclear<br> Solar<br> Natural Gas
    8·1 answer
  • A 460 g , 6.0-cm-diameter can is filled with uniform, dense food. It rolls across the floor at 1.1 m/s . Part A What is the can'
    8·1 answer
  • A Ferris wheel starts at rest and builds up to a final angular speed of 0.70 rad/s while rotating through an angular displacemen
    6·1 answer
  • A bar of silicon is 4 cm long with a circular cross section. If the resistance of the bar is 280 Ω at room temperature, what is
    10·1 answer
  • URGENT! PLEASE ANSWER!!
    15·1 answer
  • Heeeelllllllpppp I need this right now
    13·2 answers
  • Two identical spheres a and b carry charges of +0.6 coulomb and -0.2 coulomb, respectively. If these spheres touch, the resultin
    5·1 answer
  • Which would deliver a greater change in momentum to an opponent’s body - a dodgeball that traveled at 10m/s and rebounded with a
    10·1 answer
  • Would a phone, computer, and tablet work in space? Why?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!