Answer:
Chelate, any of a class of coordination or complex compounds consisting of a central metal atom attached to a large molecule, called a ligand, in a cyclic or ring structure. An example of a chelate ring occurs in the ethylenediamine-cadmium complex:
The ethylenediamine ligand has two points of attachment to the cadmium ion, thus forming a ring; it is known as a didentate ligand. (Three ethylenediamine ligands can attach to the Cd2+ ion, each one forming a ring as depicted above.) Ligands that can attach to the same metal ion at two or more points are known as polydentate ligands. All polydentate ligands are chelating agents.
Chelates are more stable than nonchelated compounds of comparable composition, and the more extensive the chelation—that is, the larger the number of ring closures to a metal atom—the more stable the compound. This phenomenon is called the chelate effect; it is generally attributed to an increase in the thermodynamic quantity called entropy that accompanies chelation. The stability of a chelate is also related to the number of atoms in the chelate ring. In general, chelates containing five- or six-membered rings are more stable than chelates with four-, seven-, or eight-membered rings.
Explanation:
I’m so sorry about the other guy! The answer is A. Infertile soil honey
God Bless!! <3
Answer:
Electrolysis (of hydrochloric acid) is a way of splitting up (decomposition) of the compound (hydrogen chloride in water) using electrical energy.
Explanation:
The electrical energy comes from a d.c. (direct current) battery or power pack supply. A conducting liquid, containing ions, called the electrolyte (hydrochloric acid), must contain the compound (hydrogen chloride) that is being broken down.
Answer:
joules
Explanation:
it is the measurement of energy
Answer:
None of the given options
Explanation:
Let's go case by case:
A. No matter the volume, the concentration of Fe(NO₃)₃ (and thus of [Fe³⁺] as well) is 0.050 M.
B. We can calculate the moles of Fe₂(SO₄)₃:
- 0.020 M * 0.80 L = 0.016 mol Fe₂(SO₄)₃
Given that there are two Fe⁺³ moles per Fe₂(SO₄)₃ mol, in the solution we have 0.032 moles of Fe⁺³. With that information in mind we <u>can calculate [Fe⁺³]</u>:
- 0.032 mol Fe⁺³ / 0.80 L = 0.040 M
C. Analog to case A., the molar concentration of Fe⁺³ is 0.040 M.
D. Similar to cases A and C., [Fe⁺³] = 0.010 M.
Thus none of the given options would have [Fe⁺³] = 0.020 M.