Answer:
A. N₂(g) + 3H₂(g) -----> 2NH₃ exothermic
B. S(g) + O₂(g) --------> SO₂(g) exothermic
C. 2H₂O(g) --------> 2H₂(g) + O₂(g) endothermic
D. 2F(g) ---------> F₂(g) exothermic
Explanation:
The question says predict not calculate. So you have to use your chemistry knowledge, experience and intuition.
A. N₂(g) + 3H₂(g) -----> 2NH₃ is exothermic because the Haber process gives out energy
B. S(g) + O₂(g) --------> SO₂(g) is exothermic because it is a combustion. The majority, if not all, combustion give out energy.
C. 2H₂O(g) --------> 2H₂(g) + O₂(g) is endothermic because it is the reverse reaction of the combustion of hydrogen. If the reverse reaction is exothermic then the forward reaction is endothermic
D. 2F(g) ---------> F₂(g) is exothermic because the backward reaction is endothermic. Atomisation is always an endothermic reaction so the forward reaction is exothermic
Answer:
Water
Explanation:
Solid potassium hydrogen tartrates (KHT) is soluble in water. This is especially at room temperature.
The solvent for KHT is water.
B is the correct answer.
The exosphere is the outermost region of the atmosphere the gradually merges out into space. The water cycle does not occur within this region.
Molar mass Argon = 39.948 g/mol
1 mol ------ 39.948 g
mol ----- 20.0 g
mol = 20.0 * 1 / 39.948
= 0.5006 moles
1 mol --------------------- 22.4 L ( at STP )
0.5006 moles ------------- L
L = 0.5006 * 22.4
= 11.21 L
hope this helps!
Answer:
The seven SI base units, which are comprised of:
Length - meter (m)
Time - second (s)
Amount of substance - mole (mole)
Electric current - ampere (A)
Temperature - kelvin (K)
Luminous intensity - candela (cd)
Mass - kilogram (kg)
Explanation: