Answer:
- vertical scaling by a factor of 1/3 (compression)
- reflection over the y-axis
- horizontal scaling by a factor of 3 (expansion)
- translation left 1 unit
- translation up 3 units
Step-by-step explanation:
These are the transformations of interest:
g(x) = k·f(x) . . . . . vertical scaling (expansion) by a factor of k
g(x) = f(x) +k . . . . vertical translation by k units (upward)
g(x) = f(x/k) . . . . . horizontal expansion by a factor of k. When k < 0, the function is also reflected over the y-axis
g(x) = f(x-k) . . . . . horizontal translation to the right by k units
__
Here, we have ...
g(x) = 1/3f(-1/3(x+1)) +3
The vertical and horizontal transformations can be applied in either order, since neither affects the other. If we work left-to-right through the expression for g(x), we can see these transformations have been applied:
- vertical scaling by a factor of 1/3 (compression) . . . 1/3f(x)
- reflection over the y-axis . . . 1/3f(-x)
- horizontal scaling by a factor of 3 (expansion) . . . 1/3f(-1/3x)
- translation left 1 unit . . . 1/3f(-1/3(x+1))
- translation up 3 units . . . 1/3f(-1/3(x+1)) +3
_____
<em>Additional comment</em>
The "working" is a matter of matching the form of g(x) to the forms of the different transformations. It is a pattern-matching problem.
The horizontal transformations could also be described as ...
- translation right 1/3 unit . . . f(x -1/3)
- reflection over y and expansion by a factor of 3 . . . f(-1/3x -1/3)
The initial translation in this scenario would be reflected to a translation left 1/3 unit, then the horizontal expansion would turn that into a translation left 1 unit, as described above. Order matters.
The answer is A. C=0 and + = 3
Answer:
To find the x intercept substitute 0 for y and solve for x. To find the y intercept substitute 0 for x and solve for y.
X intercept: (-2,0)
Y intercept: (0,5/2)
im not sure if you looking for the X and Y intercept for the second equation but if you are the
X intercept: (5/2,0)
Y intercept: (0,-5)
Answer:
Enlargement.
Scale Factor: 3
Step-by-step explanation:
Use points to find the enlargement. Typically, you will use all the points.
A(1 , 1) ⇒ A'(3 , 3)
B(2 , 1) ⇒ B'(6 , 3)
C(1 , 2) ⇒ C'(3 , 6)
D(2 , 2) ⇒ D'(6 , 6)
To find the scale factor, simply divide the Point' with the original Point. Use any number.
A'(3 , 3)/(A(1 , 1)) = 3
B'(6 , 3)/(B(2 , 1)) = 3
C'(3 , 6)/(C(1 , 2)) = 3
D'(6 , 6)/(D(2 , 2)) = 3
Your scale factor is 3.