I will show you with detailed work for NaCl, but follow the same procedure for the rest of the compounds.
Molar Mass - Find the molar mass of the Na and the Cl and add them together
Na - 23
Cl - 35.5
Add those numbers together 23 + 35.5 = 58.5 g/mol
Moles in 1 tsp:
The mass measured in 1tsp of NaCl was 18 g. To calculate the amount of moles you take the mass measured and divide it by the molecular weight.
18/58.5 = 0.3077 mol
Moles of each element:
To find the moles each element in the compound you multiply the moles of 1 tsp by the number of atoms of the element in the compound
Na - 1 in NaCl
Cl - 1 in Na Cl
so take 0.3077 * 1 = 0.3077 moles Na (and Cl in this case)
Atoms of each:
take the number of moles calculated and multiply that by Avogadro's number(6.023x10^23) for the number of molecules
So for both Na and Cl:
0.3077 * 6.023x10^23 = 1.853x10^23 atoms for both Na and Cl
Answer:
radiation is measured using the conventional unit rad or the SI unit gray (Gy). The biological risk of exposure to radiation is measured using the conventional unit rem or the SI unit sievert (Sv).
Answer:
pH after the addition of 10 ml NaOH = 4.81
pH after the addition of 20.1 ml NaOH = 8.76
pH after the addition of 25 ml NaOH = 8.78
Explanation:
(1)
Moles of butanoic acid initially present = 0.1 x 20 = 2 m moles = 2 x 10⁻³ moles,
Moles of NaOH added = 10 x 0.1 = 1 x 10⁻³ moles
CH₃CH₂CH₂COOH + NaOH ⇄ CH₃CH₂CH₂COONa + H₂O
Initial conc. 2 x 10⁻³ 1 x 10⁻³ 0
Equilibrium 1 x 10⁻³ 0 1 x 10⁻³
Final volume = 20 + 10 = 30 ml = 0.03 lit
So final concentration of Acid = 
Final concentration of conjugate base [CH₃CH₂CH₂COONa]
Since a buffer solution is formed which contains the weak butanoic acid and conjugate base of that acid .
Using Henderson Hasselbalch equation to find the pH
![pH=pK_{a}+log\frac{[conjugate base]}{[acid]} \\\\=-log(1.54X10^{-5} )+log\frac{0.03}{0.03} \\\\=4.81](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%2Blog%5Cfrac%7B%5Bconjugate%20base%5D%7D%7B%5Bacid%5D%7D%20%20%5C%5C%5C%5C%3D-log%281.54X10%5E%7B-5%7D%20%29%2Blog%5Cfrac%7B0.03%7D%7B0.03%7D%20%5C%5C%5C%5C%3D4.81)
Answer:
Angle A = (12 × 9) + 12 = 108 + 12 = 120°
Angle C = (3 × 9) + 18 = 27 + 18 = 45°
Explanation:
if im not wrong this should be right
Inhibitor
Explanation:
Adding an inhibitor will slow down a chemical reaction. Inhibitors works like a negative catalyst.
The addition of a foreign body can influence the rate of a reaction.
- When a foreign body slows down a reaction, it is called an inhibitor.
- An inhibitor is a negative catalyst that will slow down a reaction.
- Such substances do not allow a reaction to proceed freely and very fast.
- They work in the opposite way a normal catalyst would.
- It is good to know conditions and chemicals that can inhibit a chemical reaction.
learn more:
Catalysts brainly.com/question/8413755
#learnwithBrainly