B because
Solve for the first variable in one of the equations, then substitute the result into the other equation.
Answer:
What is y?
Step-by-step explanation:
Answer:

Step-by-step explanation:
This problem can be solved by using the expression for the Volume of a solid with the washer method
![V=\pi \int \limit_a^b[R(x)^2-r(x)^2]dx](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint%20%5Climit_a%5Eb%5BR%28x%29%5E2-r%28x%29%5E2%5Ddx)
where R and r are the functions f and g respectively (f for the upper bound of the region and r for the lower bound).
Before we have to compute the limits of the integral. We can do that by taking f=g, that is

there are two point of intersection (that have been calculated with a software program as Wolfram alpha, because there is no way to solve analiticaly)
x1=0.14
x2=8.21
and because the revolution is around y=-5 we have

and by replacing in the integral we have
![V=\pi \int \limit_{x1}^{x2}[(lnx+5)^2-(\frac{1}{2}x+3)^2]dx\\](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint%20%5Climit_%7Bx1%7D%5E%7Bx2%7D%5B%28lnx%2B5%29%5E2-%28%5Cfrac%7B1%7D%7B2%7Dx%2B3%29%5E2%5Ddx%5C%5C)
and by evaluating in the limits we have

Hope this helps
regards
Answer:3 3/4 hour
If 1/5 takes 3/4 hours, then to travel the whole distance, which is one, it will take 3/4 * 5 hours because 1/5 * 5 = 1
A vertical line that the graph of a function approaches but never intersects. The correct option is B.
<h3>When do we get vertical asymptote for a function?</h3>
Suppose that we have the function f(x) such that it is continuous for all input values < a or > a and have got the values of f(x) going to infinity or -ve infinity (from either side of x = a) as x goes near a, and is not defined at x = a, then at that point, there can be constructed a vertical line x = a and it will be called as vertical asymptote for f(x) at x = a
A vertical asymptote can be described as a vertical line that the graph of a function approaches but never intersects.
Hence, the correct option is B.
Learn more about Vertical Asymptotes:
brainly.com/question/2513623
#SPJ1