Answer:
226.8 mg of mupirocin powder are required
Explanation:
Given that;
weight of standard pack = 22 g
mupirocin by weight = 2%
so weight of mupirocin = 2% × 22 = 2/100 × 22 = 0.44 g
so by adding the needed quantity of mupirocin powder to prepare a 3% w/w mupirocin ointment
mg of mupirocin powder are required = ?, lets rep this with x
Total weight of ointment = 22 + x g
Amount of mupirocin = 0.44 + x g
percentage of mupirocin in ointment is 3?
so
3/100 = 0.44 + x g / 22 + x g
3( 22 + x g ) = 100( 0.44 + x g )
66 + 3x g = 44 + 100x g
66 - 44 = 100x g - 3x g
97 x g = 22
x g = 22 / 97
x g = 0.2268 g
we know that; 1 gram = 1000 Milligram
so 0.2268 g = x mg
x mg = 0.2268 × 1000
x mg = 226.8 mg
Therefore, 226.8 mg of mupirocin powder are required
A variety of handheld and laboratoryinstruments is available for detectingand measuring radiation. ... Geiger Counter, with Geiger-Mueller (GM) Tube or Probe—A GM tube is a gas-filled device that, when a high voltage is applied, creates an electrical pulse when radiation interacts with the wall or gas in the tube.
Answer:
Option C= A hydrogen bond formed between a polar side chain and a hydrophobic side chain.
Explanation:
All three given options a, b and d have common mechanism to accommodate the polar amino acid.
A= A hydrogen bond forms between two polar side chains.
B= A hydrogen bond from between a polar side chain and protein back bone.
D = hydrogen bond form between polar side chains and a buried water molecules.
All these are use to accommodate the polar amino acid.
While option C is not used. which is:
A hydrogen bond formed between a polar side chain and a hydrophobic side chain.
Answer:
wowww hahahahahaha nice intelligence
When a specific amount of energy is emitted when excited electrons in an atom in a sample of an element return to the ground state, this emitted energy can
<span>be used to determine the "identity of the element".</span>