Answer : The correct option is, (c) use of a mobile and a stationary phase.
Explanation :
Chromatography : It is a separation process or technique of a mixture in which a mixture is distributed between the two phases at different rates, one of which is stationary phase and another is mobile phase.
Mobile phase : The mixture is dissolved in a solution is known as mobile phase.
Stationary phase : It is an adsorbent medium and It is a solid, liquid or gel that remains immovable when a liquid or a gas moves over the surface of adsorbent. It remains stationary.
Hence, a characteristic feature of any form of chromatography is the use of a mobile and a stationary phase.
The smallest particle of a covalently bonded compound is an atom.
Answer:
26 g
Explanation:
Write the balanced reaction first
CH4 + 2 O2 --> CO2 + 2 H2O
9.3g + 52.3g --> ? CO2
You must determine how much carbon dioxide can be made from each of the reactants. The maximum mass that can be made is the lower of the two.
From CH4:
9.3g CH4 (1molCH4/16.05gCH4) (1molCO2 / 1molCH4) (44.01g CH4 / 1molCO2) = 26 g
From O2:
52.3g O2 (1molO2/32gO2) (1molCO2/2molO2)(44.01g/1molCO2) = 36 g
Answer:
A its a step by step equation the answer is A
Answer:
Balancing chemical equation means making a number of atoms or molecules equal on both sides. In other words, this means that the number of atoms and molecules of each reacting element needs to be the same as the number of atoms and molecules of those elements in the product.
Our reaction is:
AlBr3 + K2SO4 -> KBr + Al2(SO4)3
and we need to balance it.
Since there are 3 molecules of SO4 in the product we need to put 3 before the reactant K2SO4. There are also 2 atoms of Al in the product, so we need to put 2 in front AlBr3. Now we have 6 atoms of K and Br on the left side, so we need to put 6 in front of KBr in the product.
So, our balanced equation will look like this:
2AlBr3 + 3K2SO4 -> 6KBr + Al2(SO4)3