Answer:
The volume of the gasoline in the tank is 18.85 cubic feet
Explanation:
The tank is a cylinder. The equation for calculating the cylinder volumen is πr²*h, r is radius and h is height. π is approximately 3.1416. So, The tank is resting horizontally on its side, its radius is 2 feet/2= 1 feet. h=a tank long= 6 feet.
With equation:
Vol gasoline=3.1416*1²*6=18.85 feet ³
I hope my answer helps you
Hey there!
The elements in this equation are K, N, O, H, and C.
Let's count how many of each are on each side to see if it is balanced.
K: 2 on the left, 2 on the right.
<em>N: 2 on the left, 4 on the right. </em>
<em>O: 9 on the left, 6 on the right. </em>
<em>H: 2 on the left, 4 on the right. </em>
C: 1 on the left, 1 on the right.
Notice that there are different amounts of N, O, and H on the left side and the right side.
This means that the equation is not balanced.
Hope this helps!
Answer:
a, b, c, d
Explanation:
Rutherford’ atomic model is based on the gold foil experiment. In this experiment, beam of alpha rays was bombarded on thin gold foil. He observed that:
Most of the alpha particles passed through thin foil without any deflection.
Few alpha particles deflected by an angle of 90o.
Based on observation, Rutherford concluded that majority of the space inside the atom is empty.
He explained defection of few alpha particles by assuming that most of the mass is concentrated at the nucleus and positively charged.
Therefore, among given, the correct statements are:
The atom contains a positively charged nucleus.
Positive charge is condensed in one location within the atom.
The majority of the space inside the atom is empty space
The mass of an atom is concentrated at the nucleus
Therefore, the correct options are:
a, b, c, d
I believe this process is called cellular respiration.
Answer:
C(graphite) → C(diamond), ΔH = - 0.45 kcal
CH4 + 2O2 → CO2 + 2H2O + 212,800 cal
Explanation:
C(graphite) → C(diamond), ΔH = - 0.45 kcal
CH4 + 2O2 → CO2 + 2H2O + 212,800 cal
These reactions are exothermic reaction because heat is evolved.
The energy changes occur during the bonds formation and bonds breaking.
There are two types of reaction endothermic and exothermic reaction.
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol