Identify the construction that the figure represents
1 answer:
Answer:
Not sure if this will help but that looks like a bisection of angles BAC and TSR.
You might be interested in
Answer:
it is 4.2 n
Step-by-step explanation:
because you have to divide 525/125=4.2
440 x 10 = 4,400. Yes 4,400 is 10 times as much as 440
Answer:
u
Step-by-step explanation:
X=-10 m= 6 that is what I think
Answer:
It is proved that ![\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}, \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpartial%20P%7D%7B%5Cpartial%20y%7D%3D%5Cfrac%7B%5Cpartial%20Q%7D%7B%5Cpartial%20x%7D%2C%20%5Cfrac%7B%5Cpartial%20P%7D%7B%5Cpartial%20z%7D%3D%5Cfrac%7B%5Cpartial%20R%7D%7B%5Cpartial%20x%7D%2C%20%5Cfrac%7B%5Cpartial%20Q%7D%7B%5Cpartial%20z%7D%3D%5Cfrac%7B%5Cpartial%20R%7D%7B%5Cpartial%20y%7D)
Step-by-step explanation:
Given vector field,
![F=P\uvec{i}+Q\uvec{j}+R\uvec{k}](https://tex.z-dn.net/?f=F%3DP%5Cuvec%7Bi%7D%2BQ%5Cuvec%7Bj%7D%2BR%5Cuvec%7Bk%7D)
Where,
![P=f_x=\frac{\partial f}{\partial x}, Q=f_y=\frac{\partial f}{\partial y}, R=f_z=\frac{\partial f}{\partial z}](https://tex.z-dn.net/?f=P%3Df_x%3D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D%2C%20Q%3Df_y%3D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%2C%20R%3Df_z%3D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20z%7D)
To show,
![\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}, \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpartial%20P%7D%7B%5Cpartial%20y%7D%3D%5Cfrac%7B%5Cpartial%20Q%7D%7B%5Cpartial%20x%7D%2C%20%5Cfrac%7B%5Cpartial%20P%7D%7B%5Cpartial%20z%7D%3D%5Cfrac%7B%5Cpartial%20R%7D%7B%5Cpartial%20x%7D%2C%20%5Cfrac%7B%5Cpartial%20Q%7D%7B%5Cpartial%20z%7D%3D%5Cfrac%7B%5Cpartial%20R%7D%7B%5Cpartial%20y%7D)
Consider,
![\frac{\partial P}{\partial y}=\frac{\partial}{\partial y}(\frac{\partial f}{\partial x})=\frac{\partial^2 f}{\partial y\partial x}=\frac{\partial^2 f}{\partial x\partial y}=\frac{\partial }{\partial x}(\frac{\partial f}{\partial y})=\frac{\partial Q}{\partial x}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpartial%20P%7D%7B%5Cpartial%20y%7D%3D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20y%7D%28%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D%29%3D%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20y%5Cpartial%20x%7D%3D%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20x%5Cpartial%20y%7D%3D%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20x%7D%28%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%29%3D%5Cfrac%7B%5Cpartial%20Q%7D%7B%5Cpartial%20x%7D)
![\frac{\partial P}{\partial z}=\frac{\partial}{\partial z}(\frac{\partial f}{\partial x})=\frac{\partial^2 f}{\partial z\partial x}=\frac{\partial^2 f}{\partial x\partial z}=\frac{\partial }{\partial x}(\frac{\partial f}{\partial z})=\frac{\partial R}{\partial x}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpartial%20P%7D%7B%5Cpartial%20z%7D%3D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20z%7D%28%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D%29%3D%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20z%5Cpartial%20x%7D%3D%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20x%5Cpartial%20z%7D%3D%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20x%7D%28%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20z%7D%29%3D%5Cfrac%7B%5Cpartial%20R%7D%7B%5Cpartial%20x%7D)
![\frac{\partial Q}{\partial z}=\frac{\partial}{\partial z}(\frac{\partial f}{\partial y})=\frac{\partial^2 f}{\partial z\partial y}=\frac{\partial^2 f}{\partial y\partial z}=\frac{\partial}{\partial y}(\frac{\partial f}{\partial z})=\frac{\partial R}{\partial y}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpartial%20Q%7D%7B%5Cpartial%20z%7D%3D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20z%7D%28%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%29%3D%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20z%5Cpartial%20y%7D%3D%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20y%5Cpartial%20z%7D%3D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20y%7D%28%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20z%7D%29%3D%5Cfrac%7B%5Cpartial%20R%7D%7B%5Cpartial%20y%7D)
Hence proved.