<span>The correct option is C. The concentration of phosphate inside the cytosol is already greater than the concentration of phosphate in the surrounding fluid, yet, the cell still want to move more phosphate into the cell. To do this, energy is needed to move the phosphate ions against the concentration gradient, so the type of transportation requires is ACTIVE TRANSPORT.</span><span />
Solution:
At the equivalence point, moles NaOH = moles benzoic acid
HA + NaOH ==> NaA + H2O where HA is benzoic acid
At the equivalence point, all the benzoic acid ==> sodium benzoate
A^- + H2O ==> HA + OH- (again, A^- is the benzoate anion and HA is the weak acid benzoic acid)
Kb for benzoate = 1x10^-14/4.5x10^-4 = 2.22x10^-11
Kb = 2.22x10^-11 = [HA][OH-][A^-] = (x)(x)/0.150
x^2 = 3.33x10^-12
x = 1.8x10^-6 = [OH-]
pOH = -log [OH-] = 5.74
pH = 14 - pOH = 8.26
Answer:
i think it is letter b. rustability but not so sureeee
Answer:
The device shown is a calorimeter that used to measure the heat transfer by a reaction under constant volume.
Explanation:
Answer:
13598 J
Explanation:
Q = m × c × ∆T
Where;
Q = amount of energy (J)
m = mass (grams)
c = specific heat capacity
∆T = change in temperature
m = 65g, specific heat capacity of water = 4.184J/g°C, initial temperature= 100°C, final temperature = 150°C
Q = 65 × 4.184 × (150 - 100)
Q = 271.96 × 50
Q = 13598 J
Hence, 13598 J of energy is required to boil 65 grams of 100°C water and then heat the steam to 150°C.