1. 0.16 N
The weight of a man on the surface of asteroid is equal to the gravitational force exerted on the man:

where
G is the gravitational constant
is the mass of the asteroid
m = 100 kg is the mass of the man
r = 2.0 km = 2000 m is the distance of the man from the centre of the asteroid
Substituting, we find

2. 1.7 m/s
In order to stay in orbit just above the surface of the asteroid (so, at a distance r=2000 m from its centre), the gravitational force must be equal to the centripetal force

where v is the minimum speed required to stay in orbit.
Re-arranging the equation and solving for v, we find:

She can put chalk in vinegar as the vinegar will disintegrate the chalk chemically demonstrating chemical changes. But for physical changes she can break the chalk into small pieces by smashing it with something or her hand.
Answer:
a) 42 m/s, positive direction (to the east), b) 42 m/s, negative direction (to the west).
Explanation:
a) Let consider that Car A is moving at positive direction. Then, the relative velocity of Car A as seen by the driver of Car B is:

42 m/s, positive direction (to the east).
b) The relative velocity of Car B as seen by the drive of Car A is:

42 m/s, negative direction (to the west).
Answer:
d. The magnitude of the work done by the earth on the satellite is non zero
Explanation:
The work done is equal to the product of the force and the distance moved in the direction of the force, the force and the distance act perpendicular to one another, therefore no work is done in the circular motion of the movement of the earth.
Answer:
The correct option is (d).
Explanation:
- The energy a particle has because of its charge and its position relative to another particle is called thermal energy.
- It is the energy that comes from heat. This is generated by the movement of the particles in an object.
- Thermal energy is the energy an object or system has due to the movement of particles within.
Hence, the correct option is (d).