Work = force in the direction of the movement x distance = 27 N x 1.7 m
Work = 45.9 joules
Answer: option c.
Answer:
8.4 V
Explanation:
induced emf, e1 = 5.8 V
Magnetic field, B1 = 0.38 T
magnetic field, B2 = 0.55 T
induced emf, e2 = ?
As we know that the induced emf is directly proportional to the magnetic field strength.
When the other parameters remains constant then


e2 = 8.4 V
Thus, the induced emf is 8.4 V.
The net force on q₃ will be 17.51 N. The net force is the algebraic sum of the two forces on the pleading q₃
<h3 /><h3>What is Columb's law?</h3>
The force of attraction between two charges, according to Coulomb's law, is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.
The force,by the charge q₁ on the q₃;

The force,by the charge q₂ on the q₃;

The net force is the sum of the two forces;

Hence, the net force on q₃ will be 17.51 N.
To learn more about Columb's law, refer to the link;
brainly.com/question/1616890
#SPJ1
Answer:
λ = 3.4 × 10^18m
Explanation:using Rydberg equation:
1/λ = RH •Z^2[ (1/n1) - (1/n2) ]
RH = Rydberg constant = 2.18x 10^-18j)
n1 and n2 = energy levels (n2 >n1)
Z = atomic number = 4
Substitute
1/λ = 2.18x 10^-18• [ (1/3) - (1/5) }
λ = 3.4 × 10^18m
Answer:
65.9°
Explanation:
When light goes through air to glass
angle of incidence, i = 35°
refractive index, n = 1.5
Let r be the angle of refraction
Use Snell's law


Sin r = 0.382
r = 22.5°
Now the ray is incident on the glass surface.
A = r + r'
Where, r' be the angle of incidence at other surface
r' = 60° - 22.5° = 37.5°
Now use Snell's law at other surface

Where, i' be the angle at which the light exit from other surface.

Sin i' = 0.913
i' = 65.9°