I don't understand the language.....
Answer:
a) ΔV₁ = 21.9 V, b) U₀ = 99.2 10⁻¹² J, c) U_f = 249.9 10⁻¹² J, d) W = 150 10⁻¹² J
Explanation:
Let's find the capacitance of the capacitor
C =
C = 8.85 10⁻¹² (8.00 10⁻⁴) /2.70 10⁻³
C = 2.62 10⁻¹² F
for the initial data let's look for the accumulated charge on the plates
C =
Q₀ = C ΔV
Q₀ = 2.62 10⁻¹² 8.70
Q₀ = 22.8 10⁻¹² C
a) we look for the capacity for the new distance
C₁ = 8.85 10⁻¹² (8.00 10⁻⁴) /6⁴.80 10⁻³
C₁ = 1.04 10⁻¹² F
C₁ = Q₀ / ΔV₁
ΔV₁ = Q₀ / C₁
ΔV₁ = 22.8 10⁻¹² /1.04 10⁻¹²
ΔV₁ = 21.9 V
b) initial stored energy
U₀ =
U₀ = (22.8 10⁻¹²)²/(2 2.62 10⁻¹²)
U₀ = 99.2 10⁻¹² J
c) final stored energy
U_f = (22.8 10⁻¹²) ² /(2 1.04 10⁻⁻¹²)
U_f = 249.9 10⁻¹² J
d) the work of separating the plates
as energy is conserved work must be equal to energy change
W = U_f - U₀
W = (249.2 - 99.2) 10⁻¹²
W = 150 10⁻¹² J
note that as the energy increases the work must be supplied to the system
You find net charge by subtracting the number of electrons from the number of protons (since protons are positive and electrons are negative). 9 - 10 = -1
Answer:
potential energy
Explanation:
this is because potential energy= mgh
so when m= 2m
p.e. = 2 times the previous value
Therefore , When mass is doubled , Potential energy gets doubled. When mass is halved , Potential energy decreases by half.