The statement “When
an object is in orbit, it is falling at the same rate at which the Earth is
curving” is true. The speed of a satellite orbiting the earth depends only on
the mass of the earth and the mass of the satellite.
It's not so much a "contradiction" as an approximation. Newton's law of gravitation is an inverse square law whose range is large. It keeps people on the ground, and it keeps satellites in orbit and that's some thousands of km. The force on someone on the ground - their weight - is probably a lot larger than the centripetal force keeping a satellite in orbit (though I've not actually done a calculation to totally verify this). The distance a falling body - a coin, say - travels is very small, and over such a small distance gravity is assumed/approximated to be constant.
Answer:
(A) Impulse = 9Ns
(B) F = 1286N
Explanation:
Impulse = change in momentum = m(v-u)
v = 0 (the hand comes to a stop)
u = -10m/s
Mass = 0.9kg
Impulse = 0.9 ×(0- (-10))
= 9Ns
(B) F×t = Impulse
F = Impulse/ t
t = 7ms = 7×10-³
F = 9/ (7×10-³)
F = 1286N.
Multiply these numbers and there’s your answer