Based on your problem where as ask for the distance of the ball drop between the pitchers mound and the home plate and with a given of the speed of ball is 43m/s and the homeplates is 60.6ft away. Based on my step by step procedure and also considering the value of gravity by 9.8m/s^2 i came up with the distance of 144m away
Answer:
D. Both occur between objects independently whether they are in contact or not.
Explanation:
- The gravitational force is a force that is exerted between two (or more) objects having mass. This force is always attractive and its magnitude is given by
![F=G\frac{m_1 m_2}{r^2}](https://tex.z-dn.net/?f=F%3DG%5Cfrac%7Bm_1%20m_2%7D%7Br%5E2%7D)
where G is the gravitational constant, m1 and m2 are the two masses, and r is the distance between the two masses.
- The electrical force is a force that is exerted between two (or more) objects having electrical charge. It can be either attractive or repulsive, depending on the sign of the two charges, and its magnitude is given by
![F=k\frac{q_1 q_2}{r^2}](https://tex.z-dn.net/?f=F%3Dk%5Cfrac%7Bq_1%20q_2%7D%7Br%5E2%7D)
where k is the Coulomb's constant, q1 and q2 are the two charges, and r the distance between the two charges.
Looking at both formulas, we see that the two forces are present even when the two objects are not in contact with each other (in fact, r can assume any value in the formula). They are said to be non-contact forces. Therefore, the correct option is
D. Both occur between objects independently whether they are in contact or not.
Answer:
The car starts moving in the positive direction at x = 0.2 seconds. Initially it moves very little, but it covers a greater distance with each time increment.
Explanation:
The correct response that will be used to describe this particular element would be the third option, since all of the other options are incorrect and apply to different elements in their groups. The element is a metal and will react with a non metal.
Answer:
Electrical Energy
Explanation:
An electric generator is a device that changes kinetic energy to electrical energy through electromagnetic induction. Electromagnetic induction is the process of generating electric current with a magnetic field. ... Because the coil is rotating in a magnetic field, electric current is generated in the wire.