Answer:
1.59 seconds
12.3 meters
but if you are wise you will read the entire answer.
Explanation:
This is a good question -- if not a bit unusual. You should try and understand the details. It will come in handy.
Time
<u>Given</u>
a = 0 This is the critical point. There is no horizontal acceleration.
d = 20 m
v = 12.6 m/s
<u>Formula</u>
d = vi * t + 1/2at^2
<u>Solution</u>
Since the acceleration is 0, the formula reduces to
d = vi * t
20 = 12.6 * t
t = 20 / 12.6
t = 1.59 seconds.
It takes 1.59 seconds to hit the ground
Height of the building
<u>Givens</u>
t = 1.59 sec
vi = 0 Another critical point. The beginning speed vertically is 0
a = 9.8 m/s^2 The acceleration is vertical.
<u>Formula</u>
d = vi*t + 1/2 a t^2
<u>Solution</u>
d = 1/2 a*t^2
d = 1/2 * 9.8 * 1.59^2
d = 12.3 meters.
The two vi's are not to be confused. The horizontal vi is a number other other 0 (in this case 12.6 m/s horizontally)
The other vi is a vertical speed. It is 0.
False because the Ionsophere lies between the Mesosphere and the Theromsphere. If can can you give me brainliest :o ?
Answer:
95.9°
Explanation:
The diagram illustrating the action of the two forces on the object is given in the attached photo.
Using sine rule a/SineA = b/SineB, we can obtain the value of B° as shown in the attached photo as follow:
a/SineA = b/SineB,
83/Sine52 = 56/SineB
Cross multiply to express in linear form
83 x SineB = 56 x Sine52
Divide both side by 83
SineB = (56 x Sine52)/83
SineB = 0.5317
B = Sine^-1(0.5317)
B = 32.1°
Now, we can obtain the angle θ, between the two forces as shown in the attached photo as follow:
52° + B° + θ = 180° ( sum of angles in a triangle)
52° + 32.1° + θ = 180°
Collect like terms
θ = 180° - 52° - 32.1°
θ = 95.9°
Therefore, the angle between the two forces is 95.9°
Answer: An electric motor
Explanation:
I took the quiz for physics and this was the answer
Answer:

Explanation:
According to “Newton's second law”
“Force” is “mass” times “acceleration”, or F = m× a. This means an object with a larger mass needs a stronger force to be moved along at the same acceleration as an object with a small mass
Force = mass × acceleration

Given that,
Mass = 5.32 kg


F = 12.7N
Normal force = mg + F sinx,
“m” being the object's "mass",
“g” being the "acceleration of gravity",
“x” being the "angle of the cart"

To find normal force substitute the values in the formula,
Normal force = 5.32 × 9.8 + 12.7 × sin(-28.7)
Normal force = 52.136 + 12.7 × 0.480
Normal force = 52.136 + 6.096
Normal force = 58.232 N
<u>Acceleration of the cart</u>:



