The gravitational acceleration at any distance r is given by

where G is the gravitational constant, M the Earth's mass and r is the distance measured from the center of the Earth.
The Earth's radius is
, so the meteoroid is located at a distance of:

And by substituting this value into the previous formula, we can find the value of g at that altitude:

Answer: 3.49 s
Explanation:
We can solve this problem with the following equation of motion:
(1)
Where:
is the final height of the ball
is the initial height of the ball
is the initial velocity (the ball was dropped)
is the acceleratio due gravity
is the time
Isolating
:
(2)
(3)
Finally we find the time the ball is in the air:
(4)
Okay, so they want to basically Increase their grip, and they are taking advantage of the force of friction
The average power produced by the soccer player is 710 Watts.
Given the data in the question;
- Mass of the soccer player;

- Energy used by the soccer player;

- Time;

Power; 
Power is simply the amount of energy converted or transferred per unit time. It is expressed as:

We substitute our given values into the equation
![Power = \frac{5100000J}{7200s}\\\\Power = 708.33J/s \\\\Power = 710J/s \ \ \ \ \ [ 2\ Significant\ Figures]\\\\Power = 710W](https://tex.z-dn.net/?f=Power%20%3D%20%5Cfrac%7B5100000J%7D%7B7200s%7D%5C%5C%5C%5CPower%20%3D%20708.33J%2Fs%20%5C%5C%5C%5CPower%20%3D%20710J%2Fs%20%5C%20%5C%20%5C%20%5C%20%5C%20%5B%202%5C%20Significant%5C%20Figures%5D%5C%5C%5C%5CPower%20%3D%20710W)
Therefore, the average power produced by the soccer player is 710 Watts.
Learn more: brainly.com/question/20953664