Answer:
Option C is the correct answer
Explanation:
Distance travelled by car during reaction time

The car stopped before hitting the animal by 
Distance travelled during deceleration is 
Hence by 
We have

Option C is the correct answer
<u>Halfway</u><u> between the like poles of two magnets, because the field lines bend away and do not enter this area.</u>
How does a magnetic field diagram show where the field is strongest?
- The magnetic field lines do not ever cross.
- The lines include arrowheads to indicate the direction of the force exerted by a magnetic north pole.
- The closer the lines are to the poles, the stronger the magnetic field (thus the magnetic field from a bar magnet is highest closest to the poles).
Where is magnetic field the strongest and weakest on a magnet?
- The bar magnet's magnetic field is strongest at its core and weakest between its two poles.
- The magnetic field lines are densest immediately outside the bar magnet and least dense in the core.
Which two locations on the magnet would have the greatest attractive forces?
- Inside the magnet itself, the field lines run from the south pole to the north pole.
- The magnetic field is strongest in areas of greatest density of magnetic field lines, or areas of the greatest magnetic flux density.
Learn more about magnetic field
brainly.com/question/11514007
#SPJ4
Answer:
Correct answer: E total = 2,800 J
Explanation:
Given:
m = 4 kg the mass of the object
V = 20 m/s the speed (velocity) of the object
H = 50 m the height of the object above the surface
E total = ? J
The total energy of an object is equal to the sum of potential and kinetic energy
E total = Ep + Ek
Ep = m g H we take g = 10 m/s²
Ep = 4 · 10 · 50 = 2,000 J
Ek = m V² / 2
Ek = 4 · 20² / 2 = 2 · 400 = 800 J
E total = 2,000 + 800 = 2,800 J
E total = 2,800 J
God is with you!!!
The efficiency of an ideal Carnot heat engine can be written as:

where

is the temperature of the cold region

is the temperature of the hot region
For the engine in our problem, we have

and

, so the efficiency is
Answer:
The velocity after 2 seconds can be found through:
V = u +a*t
Where V is final velocity, u is initial velocity, a is acceleration and t is time.
V = 0 + 2* 2= 4 meters/second
The distance (s) can be found through:
V^2= u^2 +2*a* s
Where V is final velocity, u is initial velocity, a is acceleration.
4^2= 0^2 + 2 *2*s
16= 0 + 4s
s= 4 meters
Distance (s) can also be found through:
s= ut + 1/2 at^2
s= 0+ 1/2 *2*2^2= 1 *2*2
s= 4 meters
Explanation: