Explanation:
Radicals are so reactive because they require so much energy to form.
Answer:
The answer to your question is 0.79 moles of SnCl₂
Explanation:
Data
moles of SnCl₂ = ?
mass of FeCl₃ = 85.3 g
excess Sn
Balanced chemical reaction
2 FeCl₃ + 3 Sn ⇒ 3 SnCl₂ + 2 Fe
Process
1.- Convert the mass of FeCl₃ to moles
Molar mass of FeCl₃ = 56 + (35.5 x 3)
= 56 + 106.5
= 162.5 g
Use proportions to find the moles of FeCl₃
162.5 g -------------------- 1 mol
85.3 g ------------------- x
x = (85.3 x 1) / 162.5
x = 0.525 moles
2.- Find the number of moles SnCl₂
2 moles of FeCl₃ ----------------- 3 moles of SnCl₂
0.525 moles ----------------- x
x = (0.525 x 3) / 2
x = 0.79 moles of SnCl₂
Here we have to get the height of the column in meter, filled with liquid benzene which exerting pressure of 0.790 atm.
The height of the column will be 0.928 m.
We know the relation between pressure and height of a liquid placed in a column is: pressure (P) = Height (h) × density of the liquid (ρ) × gravitational constant (g).
Here the pressure (P) is 0.790 atm,
or [0.790 × (1.013 × 10⁶)] dyne/cm². [As 1 atm is equivalent to 1.013 × 10⁶ dyne/cm²]
Or, 8.002ₓ10⁵ dyne/cm².
density of benzene is given 0.879 g/cm³.
And gravitational constant (g) is 980 cm/sec².
On plugging the values we get:
8.002×10⁵ = h × 0.879 × 980
Or, h = 928.931 cm
Or, h = 9.28 m (As 1 m = 100 cm)
Thus the height will be 9.28 m.
The steps would be :
1. Rapid and reversible formation of local secondary structure
2. Formation of domain through cooperative aggregation of folding nuclei
3. molten globule formation of assembled domains
4. adjustment in conformation of domain.
5. Final protein monomer formation
Answer:
Yes
Explanation:
Scientists using the latest microscopic technology have found they can move individual atoms around a surface at will, a breakthrough that could have profound implications in the ultra-small world of electronics and even in industry