1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hichkok12 [17]
3 years ago
5

Question 1 of 8.

Engineering
2 answers:
Rasek [7]3 years ago
8 0
The answer seems pretty obvious, all of the above
kykrilka [37]3 years ago
5 0

Answer: all of the above

Explanation:

You might be interested in
Ti-6Al-4V has a fracture toughness of 74.6 MPa-m0.5. How much stress (in MPa) would it take to fail a plate loaded in tension th
Nikitich [7]

Answer:

critical stress  = 595 MPa

Explanation:

given data

fracture toughness =  74.6 MPa-\sqrt{m}

crack length = 10 mm

f = 1

solution

we know crack length = 10 mm  

and crack length = 2a as given in figure attach

so 2a = 10

a = 5 mm

and now we get here with the help of plane strain condition , critical stress is express as

critical stress  = \frac{k}{f\sqrt{\pi a}}    ......................1

put here value and we get

critical stress  = \frac{74.6}{1\sqrt{\pi 5\times 10^{-3}}}

critical stress  = 595 MPa

so here stress is change by plane strain condition because when plate become thinner than condition change by plane strain to plain stress.

plain stress condition occur in thin body where stress through thickness not vary by the thinner section.

6 0
3 years ago
Water is being added to a storage tank at the rate of 500 gal/min. Water also flows out of the bottom through a 2.0-in-inside di
melomori [17]

Answer:

From the answer, the water level is falling (since rate of outflow is more than that of inflow), and the rate at which the water level in the storage tank is falling is

(dh/dt) = - 0.000753

Units of m/s

Explanation:

Let the volume of the system at any time be V.

V = Ah

where A = Cross sectional Area of the storage tank, h = height of water level in the tank

Let the rate of flow of water into the tank be Fᵢ.

Take note that Fᵢ is given in the question as 500 gal/min = 0.0315 m³/s

Let the rate of flow of water out of the storage tank be simply F.

F is given in the form of (cross sectional area of outflow × velocity)

Cross sectional Area of outflow = πr²

r = 2 inches/2 = 1 inch = 0.0254 m

Cross sectional Area of outflow = πr² = π(0.0254)² = 0.00203 m²

velocity of outflow = 60 ft/s = 18.288 m/s

Rate of flow of water from the storage tank = 0.0203 × 18.288 = 0.0371 m³/s

We take an overall volumetric balance for the system

The rate of change of the system's volume = (Rate of flow of water into the storage tank) - (Rate of flow of water out of the storage tank)

(dV/dt) = Fᵢ - F

V = Ah (since A is constant)

dV/dt = (d/dt) (Ah) = A (dh/dt)

dV/dt = A (dh/dt) = Fᵢ - F

Divide through by A

dh/dt = (Fᵢ - F)/A

Fi = 0.0315 m³/s

F = 0.0371 m³/s

A = Cross sectional Area of the storage tank = πD²/4

D = 10 ft = 3.048 m

A = π(3.048)²/4 = 7.30 m²

(dh/dt) = (0.0315 - 0.0370)/7.3 = - 0.000753

(dh/dt) = - 0.000753

4 0
3 years ago
When two or more simple machines are combined they form
Volgvan
Compound machine is the answer
8 0
3 years ago
What is the potiental energy of a 3 kg ball that is on the ground
Llana [10]

Answer:

147.15

Explanation:

147.15 is the answer

8 0
2 years ago
A waste stabilization pond is used to treat a dilute municipal wastewater before the liquid is discharged into a river. The infl
german

Answer:

BOD concentration at the outflow = 17.83 mg/L

Explanation:

given data

flow rate of Q = 4,000 m³/day

BOD1 concentration of Cin = 25 mg/L

volume of the pond = 20,000 m³

first-order rate constant equal = 0.25/day

to find out

What is the BOD concentration at the outflow of the pond

solution

first we find the detention time that is

detention time t = \frac{volume}{flow rate}

detention time t = \frac{20000}{4000}

detention time = 5 days

so

BOD concentration at the outflow of pond is express as

BOD concentration at the outflow = Cin ( 1 - e^{-kt} )

here k is first-order rate constant and t is detention time and Cin is BOD1 concentration

so

BOD concentration at the outflow = 25 ( 1 - e^{-0.25(5)} )

BOD concentration at the outflow = 17.83 mg/L

8 0
3 years ago
Other questions:
  • In Visual Basic/Visual Studio, characteristics of controls, such as the Name of the control, or the Text displayed on the contro
    10·1 answer
  • Line(s) indicates passing is allowed if there are no oncoming cars.
    12·1 answer
  • What is the average linear (seepage) velocity of water in an aquifer with a hydraulic conductivity of 6.9 x 10-4 m/s and porosit
    13·1 answer
  • -0-1"<br> -0<br> -20<br> -15<br> -10<br> 0<br> -5
    9·1 answer
  • The current flow in an NMOS transistor is due to one of the following:
    11·1 answer
  • I’m doing a project on renewable energy. There are 6 energy sources. Solar, wind, geothermal, hydroelectric, tidal, and biomass.
    14·2 answers
  • According to the video, what are some tasks that Construction Managers perform? Check all that apply.
    9·2 answers
  • The proposed grading at a project site will consist of 25,100 m3 of cut and 23,300 m3 of fill and will be a balanced earthwork j
    8·1 answer
  • on the same scale for stress, the tensile true stress-true strain curve is higher than the engineeringstress-engineering strain
    10·1 answer
  • Which of these are not referenced in an assembly?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!