I’m so sorry ii wish ii could help
Answer: check the engines i swear if ur talking about an actual bike im gonna be so embarrassed lma0
Answer:
Check the explanation
Explanation:
Kindly check the attached images below to see the diagram design to solve the above question.
Answer:
Change in length = 0.1257 mm
Change in diameter= -0.03771mm
Explanation:
Given
Diameter, d = 15 mm
Length of rod, L = 200mm
F = Force= 300N
d = 0.015m
Ep=2.70 GPa, np=0.4.
First, we have to calculate the normal stress using
σ = F/A where F = Force acting on the Cross-sectional area
A = Area
Area is calculated as πd²/4 where d = 0.015m
A = 22/7 * 0.015²/4
A = 0.000176785714285m²
A = 1.768E-4m²
So, stress. σ = 300N/1.768E-4m²
σ = 1696832.579185520Pa
σ = 1.697MPa
Calculating E(long)
E(long) = σ /Ep
E(long) = 1.697E-3/2.70
E(long) = 0.0006285
At this point, we fan now calculate the change in length of the element;
∆L = E(long) * L
∆L = 0.0006285 * 200mm
∆L = 0.1257mm
Calculating E(lat)
E(lat) = -np * E(long)
E(lat) = -4 * 0.0006285
E(lat) = -0.002514
At this point, we can now calculate the change in diameter of the element;
∆D = E(lat) * D
∆L = -0.002514 * 15mm
∆L = -0.03771mm
Answer:
a)We know that acceleration a=dv/dt
So dv/dt=kt^2
dv=kt^2dt
Integrating we get
v(t)=kt^3/3+C
Puttin t=0
-8=C
Putting t=2
8=8k/3-8
k=48/8
k=6