Explanation:
Step1
Factor of safety is the number that is taken for the safe design of any component. It is the ratio of failure stress to the maximum allowable stress for the material.
Step2
It is an important parameter for design of any component. This factor of safety is taken according to the environment condition, type of material, strength, type of component etc.
Step3
Different material has different failure stress. So, ductile material fails under shear force. Ductile material’s FOS is based on yield stress as failure stress as after yield point ductile material tends to yield. Brittle material’s FOS is based on ultimate stress as failure stress.
The expression for factor of safety for ductile material is given as follows:

Here,
is yield stress and
is allowable stress.
The expression for factor of safety for brittle material is given as follows:

Here,
is ultimate stress and
is allowable stress.
Answer:
1. Yes.
2. Localized corrosion
Explanation:
Should she be worried about corrosion?
Yes, the engineer needs to be worried about corrosion as stainless steel has a lower resistance to corrosion, in other words, stainless steel corrodes faster than Titanium.
If so, what types of corrosion could take place?
The type of corrosion that takes place is called Localized corrosion. Localized corrosion occurs when a small part of a component experiences corrosion. In this case, the ball component of the femoral stem is made of stainless steel which will corrode faster than the other parts of the femoral stem which is made of Titanium.
Answer:
percentage change in volume is 2.60%
water level rise is 4.138 mm
Explanation:
given data
volume of water V = 500 L
temperature T1 = 20°C
temperature T2 = 80°C
vat diameter = 2 m
to find out
percentage change in volume and how much water level rise
solution
we will apply here bulk modulus equation that is ratio of change in pressure to rate of change of volume to change of pressure
and we know that is also in term of change in density also
so
E =
................1
And
............2
here ρ is density
and we know ρ for 20°C = 998 kg/m³
and ρ for 80°C = 972 kg/m³
so from equation 2 put all value


dV = 0.0130 m³
so now % change in volume will be
dV % =
× 100
dV % =
× 100
dV % = 2.60 %
so percentage change in volume is 2.60%
and
initial volume v1 =
................3
final volume v2 =
................4
now from equation 3 and 4 , subtract v1 by v2
v2 - v1 =
dV =
put here all value
0.0130 =
dl = 0.004138 m
so water level rise is 4.138 mm
The main objective of phasing out an INDUCTION MOTOR is to identify the ends of the stator coils.
<h3>What is an induction motor?</h3>
An induction motor is a device based on alternate electricity (AC) which is composed of three different stator coils.
An induction motor is a device also known as an asynchronous motor due to its irregular velocity.
In conclusion, the objective of phasing out an INDUCTION MOTOR is to identify the ends of the stator coils.
Learn more on induction motors here:
brainly.com/question/15721280
#SPJ1