1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveticcg [70]
3 years ago
11

How many D-cell batteries would it take to power a human for 1 day?

Engineering
1 answer:
lara31 [8.8K]3 years ago
6 0

Answer:

it would take approximately 232 to 258 D cell batteries to power a human for 1 day.

Explanation:

<em>Estimate the recommended daily food intake (in Food Calories).</em>

An average adult man requires between 2000 to 3000 calories per day.

<em>Estimate the daily energy (in joule) a human needs.</em>

As we know 1 food calorie is equal to 4.184 Joules of energy

2000*4.184 to 3000*4.184

8368 to 12552 Joules

But for engineering calculations 1 food calorie is equal to 1000 engineering calories, so

8368*1000 to 12552*1000

8368000 to 12552000 Joules

<em>Estimate the voltage (in volt) of one D cell battery</em>.

The voltage of a D cell battery is around 1.5 Volts

<em>Estimate the charge (in amp-hours) of one D cell battery.</em>

The amp-hours of a D cell battery varies with the manufacturing company, the typical amp-hours are in the range of 6 to 10 amp-hours.

<em>Estimate the energy of one D cell battery (in watt-hour).</em>

Energy in watt-hour is given by

voltage*amp-hour

1.5*6 to 1.5*10

9 to 15 watt-hour

<em>Estimate the number of D-cell batteries it takes to power a human for 1 day.</em>

First let us calculate the energy in a D cell battery,

1 watt-hour is equal to 3600 Joules

9*3600 to 15*3600

32400 to 54000 Joules

The number of D cell batteries required is found by dividing the energy need of a human by the energy stored in a D cell battery.

12552000/54000 to 8368000/32400

232 to 258 batteries

Therefore, it would take approximately 232 to 258 D cell batteries to power a human for 1 day.

You might be interested in
Ughhh my cramps hurt sm
kozerog [31]

Answer:

Explanation:Come

tomate

5 0
2 years ago
Read 2 more answers
For a LED diode that has a= 632 nm, then the A1 is equal to:​
alexgriva [62]

Answer:

1.693242

Explanation:

The colors in the Light emitting diodes have been identified by wavelength which is measured in nano-meters. Wavelength is a function of LED chip material. The LED diode which has a = 632 then A1 will be 1.63242, this is calculated by 1 / 632. Wavelength are important for human eye sensitivity. The colors emitted from the LED will depend on the semiconductor material.

5 0
2 years ago
An aluminum alloy tube with an outside diameter of 3.50 in. and a wall thickness of 0.30 in. is used as a 14 ft long column. Ass
slega [8]

Answer:

slenderness ratio = 147.8

buckling load = 13.62 kips

Explanation:

Given data:

outside diameter is 3.50 inc

wall thickness 0.30 inc

length of column is 14 ft

E = 10,000 ksi

moment of inertia = \frac{\pi}{64 (D_O^2 -D_i^2)}

I = \frac{\pi}{64}(3.5^2 -2.9^2) = 3.894 in^4

Area = \frac{\pi}{4} (3.5^2 -2.9^2) = 3.015 in^2

radius = \sqrt{\frac{I}{A}}

r = \sqrt{\frac{3.894}{3.015}

r = 1.136 in

slenderness ratio = \frac{L}{r}

                              = \frac{14 *12}{1.136} = 147.8

buckling load = P_cr = \frac{\pi^2 EI}}{l^2}

P_{cr} = \frac{\pi^2 *10,000*3.844}{( 14\times 12)^2}

P_{cr} = 13.62 kips

3 0
2 years ago
Compute the theoretical density of ZnS given that the Zn-S distance and bond angle are 0.234 nm and 109.5o, respectively. The at
andriy [413]

Answer: the theoretical density is 4.1109 g/cm³

Explanation:  

first the image of one set of ZnS bonding in the crystal structure, we calculate the value of angle θ

θ + ∅ + 90° = 180°

θ = 90° - ∅

θ = 90° - ( 109.5° / 2 )

θ = 35.25°

next we calculate the value of x from the geometry

given that;  distance angle d = 0.234

x = dsinθ

= 0.234 × sin35.25°)

= 0.135 nm = 0.135 × 10⁻⁷ cm

next we calculate the length of the unit cell

a = 4x

a = 4(0.135)

a = 0.54 nm = 0.54 × 10⁻⁷ cm

next we calculate number of formula units

n' = (no of corner atoms in unit ell × contribution of each corner atom in unit cell) + ( no of face center atom in a unit cell × contribution of each face center atom in a unit cell)

n' = 8 × 1/8) + ( 6 × 1/2)

= 1 + 3

= 4

next we calculate the theoretical density using  this equation

P = [n'∑(Ac + AA)] / [Vc.NA]

= [n'∑(Ac + AA)] / [(a)³NA]

where the ∑Ac is sum of atomic weights of all cations in the formula unit( 65.41 g/mol)

∑AA is the sum of weights of all anions in the formula unit( 32.06 g/mol)

Na is the Avogadro’s number( 6.023 × 10²³ units/mole)

so we substitute

P = [4( 65.41 + 32.06)] / [ ( 0.54 × 10⁻⁷ )³ × (6.023 × 10²³)]

= 389.88 / 94.84

= 4.1109 g/cm³

therefore the theoretical density is 4.1109 g/cm³

5 0
2 years ago
6.28 A six-lane freeway (three lanes in each direction) in rolling terrain has 10-ft lanes and obstructions 4 ft from the right
dimulka [17.4K]

Answer:

Assume Base free flow speed (BFFS) = 70 mph

Lane width = 10 ft

Reduction in speed corresponding to lane width, fLW = 6.6 mph

Lateral Clearance = 4 ft

Reduction in speed corresponding to lateral clearance, fLC = 0.8 mph

Interchanges/Ramps = 9/ 6 miles = 1.5 /mile

Reduction in speed corresponding to Interchanges/ramps, fID = 5 mph

No. of lanes = 3

Reduction in speed corresponding to number of lanes, fN = 3 mph

Free Flow Speed (FFS) = BFFS – fLW – fLC – fN – fID = 70 – 6.6 – 0.8 – 3 – 5 = 54.6 mph

Peak Flow, V = 2000 veh/hr

Peak 15-min flow = 600 veh

Peak-hour factor = 2000/ (4*600) = 0.83

Trucks and Buses = 12 %

RVs = 6 %

Rolling Terrain

fHV = 1/ (1 + 0.12 (2.5-1) + 0.06 (2.0-1)) = 1/1.24 = 0.806

fP = 1.0

Peak Flow Rate, Vp = V / (PHV*n*fHV*fP) = 2000/ (0.83*3*0.806*1.0) = 996.54 ~ 997 veh/hr/ln

Vp < (3400 – 30 FFS)

S = FFS

S = 54.6 mph

Density = Vp/S = (997) / (54.6) = 18.26 veh/mi/ln

7 0
3 years ago
Other questions:
  • An atomic force that can attract or repel ferrous substances is<br> known as:
    14·1 answer
  • What is future active and future passive and future perfect active
    9·1 answer
  • How does flextape adhere under water?​
    8·1 answer
  • We need to design a logic circuit for interchanging two logic signals. The system has three inputs I1I1, I2I2, and SS as well as
    11·1 answer
  • Where does Elizabeth want John to do and what does she want him to do there?​
    15·1 answer
  • (25) Consider the mechanical system below. Obtain the steady-state outputs x_1 (t) and x_2 (t) when the input p(t) is the sinuso
    9·1 answer
  • Think about the KIA factory shown in the video, what are two things that managers could do to reduce waste or increase efficienc
    6·1 answer
  • ) Assuming different AM regulations; the receiver is using mixer with subtracting format. The frequency selectivity ratio is app
    12·1 answer
  • Plz help If an item is $13.00 for a case of 24, then it is $
    11·2 answers
  • I will give Brainliest, please help. :)
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!