Answer:
Your strategy here will be to use the molar mass of potassium bromide,
KBr
, as a conversion factor to help you find the mass of three moles of this compound.
So, a compound's molar mass essentially tells you the mass of one mole of said compound. Now, let's assume that you only have a periodic table to work with here.
Potassium bromide is an ionic compound that is made up of potassium cations,
K
+
, and bromide anions,
Br
−
. Essentially, one formula unit of potassium bromide contains a potassium atom and a bromine atom.
Use the periodic table to find the molar masses of these two elements. You will find
For K:
M
M
=
39.0963 g mol
−
1
For Br:
M
M
=
79.904 g mol
−
1
To get the molar mass of one formula unit of potassium bromide, add the molar masses of the two elements
M
M KBr
=
39.0963 g mol
−
1
+
79.904 g mol
−
1
≈
119 g mol
−
So, if one mole of potassium bromide has a mas of
119 g
m it follows that three moles will have a mass of
3
moles KBr
⋅
molar mass of KBr
119 g
1
mole KBr
=
357 g
You should round this off to one sig fig, since that is how many sig figs you have for the number of moles of potassium bromide, but I'll leave it rounded to two sig figs
mass of 3 moles of KBr
=
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
360 g
a
a
∣
∣
−−−−−−−−−
Explanation:
<em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>:</em><em> </em><em>3</em><em>6</em><em>0</em><em> </em><em>g</em><em> </em>
Volume = 3 cm × 3cm × 3cm
= 27 cm ³
Mass = 213 g
Density =
= <span>

</span>
<span> = 7.89 g / cm³
Thus answer is D.</span>
Jupiter's atmosphere is composed predominantly of hydrogen and helium, but if you have to select any one option then we can look at the percentage of existence of these elements that would be
<span>90 percent hydrogen.
remaining 10 percent is helium
so choose Hydrogen.</span>
Answer:
Burning wood
Explanation:
the fire releases heat into the air from the burning wood
The hybrid orbital of this molecule is
. Hence, option C is correct.
<h3>What is hybridisation?</h3>
Hybridization is defined as the concept of mixing two atomic orbitals to give rise to a new type of hybridized orbitals.
In this compound,
a hybrid orbital makes I-O bonds. Due to
hybridization iodate should have tetrahedral geometry but because of the presence of lone pair of electrons the shape of
the ion is pyramidal.
The hybrid orbital of this molecule is
. Hence, option C is correct.
Learn more about hybridisation here:
brainly.com/question/23038117
#SPJ1