Answer:first of all what is your question and i can give and example which is Use them when you have 2 forces named Fa & FF or Fg & Ff acting in opposite directions on an object and you need to know the resultant of your 2 forces.
Explanation:
i searched it up
Answer:
The average acceleration of the ball during the collision with the wall is 
Explanation:
<u>Known Data</u>
We will asume initial speed has a negative direction,
, final speed has a positive direction,
,
and mass
.
<u>Initial momentum</u>

<u>final momentum</u>

<u>Impulse</u>

<u>Average Force</u>

<u>Average acceleration</u>
, so
.
Therefore, 
To solve this problem it is necessary to consider two concepts. The first of these is the flow rate that can be defined as the volumetric quantity that a channel travels in a given time. The flow rate can also be calculated from the Area and speed, that is,
Q = V*A
Where,
A= Cross-sectional Area
V = Velocity
The second concept related to the calculation of this problem is continuity, which is defined as the proportion that exists between the input channel and the output channel. It is understood as well as the geometric section of entry and exit, defined as,


Our values are given as,


Re-arrange the equation to find the first ratio of rates we have:



The second ratio of rates is



Becasue when you rubbed your hair while you were putting on your sweater it caused it to rub against together causing electricity thingy lol. and thats why your hair goes straigh tup.
Given Information:
Initial speed = u = 3.21 yards/s
Acceleration = α = 1.71 yards/s²
Final speed = v = 7.54 yards/s
Required Information:
Distance = s = ?
Answer:
Distance = s = 13.61
Explanation:
We are given the speeds and acceleration of the runner and we want to find out how much distance he covered before being tackled.
We know from the equations of motion,
v² = u² + 2αs
Where u is the initial speed of the runner, v is the final speed of the runner, α is the acceleration of the runner and s is the distance traveled by the runner.
Re-arranging the above equation for distance yields,
2αs = v² - u²
s = (v² - u²)/2α
s = (7.54² - 3.21²)/2×1.71
s = 46.55/3.42
s = 13.61 yards
Therefore, the runner traveled a distance of 13.61 yards before being tackled.