Answer:
0.67 s
Explanation:
This is a simple harmonic motion (SHM).
The displacement,
, of an SHM is given by

A is the amplitude and
is the angular frequency.
We could use a sine function, in which case we will include a phase angle, to indicate that the oscillation began from a non-equilibrium point. We are using the cosine function for this particular case because the oscillation began from an extreme end, which is one-quarter of a single oscillation, when measured from the equilibrium point. One-quarter of an oscillation corresponds to a phase angle of 90° or
radian.
From trigonometry,
if A and B are complementary.
At
, 


So

At
, 





The period,
, is related to
by

Answer:
W / A = 39200 kg / m²
Explanation:
For this problem let's use the equilibrium equation of / newton
F = W
Where F is the force of the door and W the weight of water
W = mg
We use the concept of density
ρ = m / V
m = ρ V
The volume of the water column is
V = A h
We replace
W = ρ A h g
On the other side the cylinder cover has a pressure
P = F / A
F = P A
We match the two equations
P A = ρ A h g
P = ρ g h
P = 39200 Pa
The weight of the water column is
W = 1000 9.8 4 A
W / A = 39200 kg / m²
Answer:
See the answers below.
Explanation:
The cost of energy can be calculated by multiplying each given value, a dimensional analysis must be taken into account in order to calculate the total value of the cost in Rs.
![Cost=0.350[kW]*12[\frac{hr}{1day}]*30[days]*4.5[\frac{Rs}{kW*hr} ]=567[Rs]](https://tex.z-dn.net/?f=Cost%3D0.350%5BkW%5D%2A12%5B%5Cfrac%7Bhr%7D%7B1day%7D%5D%2A30%5Bdays%5D%2A4.5%5B%5Cfrac%7BRs%7D%7BkW%2Ahr%7D%20%5D%3D567%5BRs%5D)
The fuse can be calculated by knowing the amperage.

where:
P = power = 350 [W]
V = voltage = 240 [V]
I = amperage [amp]
Now clearing I from the equation above:
![I=P/V\\I=350/240\\I=1.458[amp]](https://tex.z-dn.net/?f=I%3DP%2FV%5C%5CI%3D350%2F240%5C%5CI%3D1.458%5Bamp%5D)
The fuse should be larger than the current of the circuit, i.e. about 2 [amp]
The answer is approximately 2.998e+8
Answer:
As we have already discussed earlier, motion is the state of change in position of an object over time. It is described in terms of displacement, distance, velocity, acceleration, time and speed. Jogging, driving a car, and even simply taking a walk are all everyday examples of motion. The relations between these quantities are known as the equations of motion.