Answer:
(a) 
(b) 
Explanation:
<u>Given:</u>
= The first temperature of air inside the tire = 
= The second temperature of air inside the tire = 
= The third temperature of air inside the tire = 
= The first volume of air inside the tire
= The second volume of air inside the tire = 
= The third volume of air inside the tire = 
= The first pressure of air inside the tire = 
<u>Assume:</u>
= The second pressure of air inside the tire
= The third pressure of air inside the tire- n = number of moles of air
Since the amount pof air inside the tire remains the same, this means the number of moles of air in the tire will remain constant.
Using ideal gas equation, we have

Part (a):
Using the above equation for this part of compression in the air, we have

Hence, the pressure in the tire after the compression is
.
Part (b):
Again using the equation for this part for the air, we have

Hence, the pressure in the tire after the car i driven at high speed is
.
Answer:
μ = 0.37
Explanation:
For this exercise we must use the translational and rotational equilibrium equations.
We set our reference system at the highest point of the ladder where it touches the vertical wall. We assume that counterclockwise rotation is positive
let's write the rotational equilibrium
W₁ x/2 + W₂ x₂ - fr y = 0
where W₁ is the weight of the mass ladder m₁ = 30kg, W₂ is the weight of the man 700 N, let's use trigonometry to find the distances
cos 60 = x / L
where L is the length of the ladder
x = L cos 60
sin 60 = y / L
y = L sin60
the horizontal distance of man is
cos 60 = x2 / 7.0
x2 = 7 cos 60
we substitute
m₁ g L cos 60/2 + W₂ 7 cos 60 - fr L sin60 = 0
fr = (m1 g L cos 60/2 + W2 7 cos 60) / L sin 60
let's calculate
fr = (30 9.8 10 cos 60 2 + 700 7 cos 60) / (10 sin 60)
fr = (735 + 2450) / 8.66
fr = 367.78 N
the friction force has the expression
fr = μ N
write the translational equilibrium equation
N - W₁ -W₂ = 0
N = m₁ g + W₂
N = 30 9.8 + 700
N = 994 N
we clear the friction force from the eucacion
μ = fr / N
μ = 367.78 / 994
μ = 0.37
Answer:
10 years
Explanation:
As you can understand from the question it is given that the planet is already filled to half of its capacity. Also the population doubles in 10 years. To fill up the planet completely the population needs to double only once. To do that only 10 years are required.
As it is mentioned there are no other factors affecting the growth rate, in 10years the planet will be filled to its carrying capacity.