Answer:
System has equal number of unknowns and equations.
Manipulation easily yielded expressions for 4 of the 7 unknowns.
However it seems that the remaining 3 unknowns x,y,z are not fixed by the equations. Different combinations (x0,y0,z0) seem possible without violating the system equations.
Is this possible, or did I most probably make a mistake in counting degrees of freedom?
Step-by-step explanation:
Answer:
Step-by-step explanation:
To solve q+(-9)=12 we do the following.
q+(-9)=12
+9 +9
q=21
Giving us are end answer of q=21.
Hope this helps!=)
Step-by-step explanation:
check the pic
answer is 4
Answer:
A=672 m²
Step-by-step explanation:
a²+b²=c² (to find h)
14²+b²=50²
196+b²=2,500
b²=2,304
√b²=√2,304
b=48
h=48
(base×height)÷2
(28×48)÷2
1,344÷2
A=672 m²