Answer:
Ep = 3924 [J]
Explanation:
To calculate this value we must use the definition of potential energy which tells us that it is the product of mass by the acceleration of gravity by height.

where:
Ep = potential energy [J] (units of Joules)
m = mass = 40 [kg]
g = gravity acceleration = 9.81 [m/s²]
h = elevation = 10 [m]
![E_{p} =40*9.81*10\\E_{p} = 3924 [J]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3D40%2A9.81%2A10%5C%5CE_%7Bp%7D%20%3D%203924%20%5BJ%5D)
Velocity is defined by rate of change in the position
which we can also write as

while acceleration is defined as rate of change in velocity

so acceleration and velocity both are rate of change in position and rate of change in velocity with respect to time respectively
out of all above statement the correct answer must be
<u>Acceleration equals change in velocity divided by time. </u>
Answer:
In water, the particles are much closer together, and they can quickly transmit vibration energy from one particle to the next.
A water wave is an example of a transverse wave. As water particles move up and down, the water wave itself appears to move to the right or left.
<h2>Answer: Resonance
</h2>
Resonance is a phenomenon that occurs when a body capable of vibrating is subjected to the action of a periodic force, whose frequency of vibration approaches the characteristic frequency of vibration (called resonance frequence) of said body. This is due a relatively small force applied in a repeated form, causing the amplitude of the oscillating system to become very large.
In other words, for the specific case of sound waves, this phenomenon occurs when the frequency of the wave that is external to the system or body coincides with the resonance frequency (characteristic frequency that reaches the maximum degree of oscillation) of this system or body.
In these circumstances the body vibrates, progressively increasing the amplitude of movement after each successive actions of the force. However, this effect can be destructive in some rigid materials.