Explanation:
The two postulates of special theory of relativity
Postulate 1: The law of physics are invariant under any of inertial frame of reference.
Postulate 2: The velocity of light is remains same in each ans every frame of reference and independent of relativity.
They are differ from classical mechanics that in classical mechanics there is no change in mass and length in relative velocity but in relativistic mechanics it changes.
These two postulates implements in phenomenon like time dilation , length contraction etc.
Thanks
Answer:
P = 1333.33 N
Explanation:
The pressure exerted by the boy on the floor can be calculated by the following equation:

where,
P = Pressure exerted by the boy = ?
F = Force Applied = Weight of Boy = 40 kg = 40 N (since 1 kg = 1N)
A = Area of application of force = 2(Area of one show) = 2(6 cm x 25 cm)
A = 2(0.06 m x 0.25 m) = 0.03 m²
Therefore,

<u>P = 1333.33 N</u>
The current in the ideal diode with forward biased voltage drop of 65V is 132.6 mA.
To find the answer, we have to know more about the ideal diode.
<h3>
What is an ideal diode?</h3>
- A type of electronic component known as an ideal diode has two terminals, only permits the flow of current in one direction, and has less zero resistance in one direction and infinite resistance in another.
- A semiconductor diode is the kind of diode that is used the most commonly.
- It is a PN junction-containing crystalline semiconductor component that is wired to two electrical terminals.
<h3>How to find the current in ideal diode?</h3>
- Here we have given with the values,

- We have the expression for current in mA of the ideal diode with forward biased voltage drop as,

Thus, we can conclude that, the current in mA of the ideal diode with forward biased voltage drop of 65 V is 132.6.
Learn more about the ideal diode here:
brainly.com/question/14988926
#SPJ4
Complete Question
A 75 kg man and a 100. Kg woman are playing tug of war on a frictionless surface. The man accelerates toward the woman at 2.0 m/s2.How much force does she use to pull on the rope
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the man is 
The mass of the woman is
The acceleration of the man is 
Generally the force which she used to pull the rope is mathematically represented as

=> 
=> 