Answer:
A. True
Explanation:
This is because these aircraft experiences different types of vibrations which include buffet vibrations and aerodynamic flutter. Buffet vibrations are vibrations caused by an interruption of airflow. Buffet vibrations are usually felt when the aerodynamic brakes are applied.
Aeroelastic flutter is the most dangerous type of vibration. This occurs when energy added to the wings due to airflow is greater than that lost due to damping. Aeroelastic flutter can cause aircraft to fail when the vibrations are large enough.
A billiard ball moves with 3 kg⋅m/s of momentum and strikes three other billiard balls that have been just sitting there at rest and not moving.
The total momentum of all four balls after the collision is <em>3 kg⋅m/s</em>, because momentum is not created or destroyed. The total amount of it after an event is the same as the total amount of it before the event.
Answer:
first one is b 2nd one is a 3rd is c and the 4th one is c also
Explanation: have a nice day
Answer:
Part a)
T = 0.52 s
Part b)

Part c)

Explanation:
As we know that the particle move from its maximum displacement to its mean position in t = 0.13 s
so total time period of the particle is given as

now we have
Part a)
T = time to complete one oscillation
so here it will move to and fro for one complete oscillation
so T = 0.52 s
Part b)
As we know that frequency and time period related to each other as



Part c)
As we know that
wavelength = 1.9 m
frequency = 1.92 Hz
so wave speed is given as



That is true because if the object is moving at Forceful speeds than it will lose more of its kinetic energy