The distance of the canoeist from the dock is equal to length of the canoe, L.
<h3>
Conservation of linear momentum</h3>
The principle of conservation of linear momentum states that the total momentum of an isolated system is always conserved.
v(m₁ + m₂) = m₁v₁ + m₂v₂
where;
v is the velocity of the canoeist and the canoe when they are together
- u₁ is the velocity of the canoe
- u₂ velocity of the canoeist
- m₁ mass of the canoe
- m₂ mass of the canoeist
<h3>Distance traveled by the canoeist</h3>
The distance traveled by the canoeist from the back of the canoe to the front of the canoe is equal to the length of the canoe.
Thus, the distance of the canoeist from the dock is equal to length of the canoe, L.
Learn more about conservation of linear momentum here: brainly.com/question/7538238
Answer:
d = 10.076 m
Explanation:
We need to obtain the velocity of the ball in the y direction
Vy = 24.5m/s * sin(35) = 14.053 m/s
To obtain the distance, we use the formula
vf^2 = v0^2 -2*g*d
but vf = 0
d = -vo^2/2g
d = (14.053)^2/2*(9.8) = 10.076 m
Answer:
Right to left
Explanation:
From right hand thumb rule, the magnetic field at the centre of loop points out of the plane of paper. Thus the straight wire current should create magnetic field into the plane of paper at the centre. Hence the direction of current in long wire should be from right to left
Answer:

Explanation:
The Planck Eistein relation, states that the energy of a photon is proportional to its frequency:

h is the Plank constant.The frequency of a photon is defined as the speed of light over its wavelength:

Replacing (2) in (1):

Answer:
The total work done by Brad each day is 176400 J
Explanation:
Hi there! The work done by a force (F) pointed in the same direction as the displacement (d) is calculated as follows:
W = F · d
The force applied is equal to the weight of Brad, that is calculated as follows:
Weight = m · g
Where:
m = mass of Brad
g = acceleration due to gravity (9.8 m/s²)
Then:
Weight = 60 kg · 9.8 m/s² = 588 N
Let´s find the vertical distance traveled by Brad each day:
He exercises 20 min per day. Each minute Brad does 60 steps. In total, Brad steps up (20 min · 60 steps/min) 1200 steps. If each step has a height of 0.25 m, the total distance traveled by Brad will be
(1200 steps · 0.25 m/step) 300 m.
Then, the total work done by Brad is
W = F · d
W = 588 N · 300 m
W = 176400 J
The total work done by Brad each day is 176400 J