1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pochemuha
3 years ago
5

OBJECTI

Physics
2 answers:
seraphim [82]3 years ago
7 0

Answer:

option A

Explanation:

simple harmonic motion

Andru [333]3 years ago
4 0

Answer:

random motion I think not sure

You might be interested in
Two identical asteroids travel side by side while touching one another. If the asteroids are composed of homogeneous pure iron a
victus00 [196]

Answer:

diameter = 21.81 ft

Explanation:

The gravitational force equation is:

  1. F=\frac{GMm}{R^{2} }

Where:

  • F => Gravitational force or force of attraction between two masses
  • M => Mass of asteroid 1
  • m => Mass of asteroid 2
  • R => Distance between asteroids 1 and 2 (from center of gravity)

We also know that the asteroids are identical so their masses are identical:

  • M=m

Since R is the distance between centers of the two asteroids and their diameters are identical (see attachment), we can conclude that:

  • R=d=2r

We don´t know the mass of the asteroids but we know they are composed of pure iron, so we can relate their masses to their density:

  • m=ρV

This is going to be helpful because the volume of a sphere is:

  • \frac{4}{3}\pi r^{3}

And know we can write our original force of gravity equation in terms of the radius of the asteroids:

  • F=\frac{GMm}{R^{2} } =\frac{Gmm}{(2r)^{2} } =\frac{Gm^{2} }{4r^{2} }
  • F=\frac{G ( \frac{4}{3}\pi r^{3}ρ)^{2} }{4r^{2} }
  • F= \frac{G(16)\pi ^{2} r^{6} ρ^{2}}{(9)(4)r^{2} } =\frac{G(16)\pi ^{2} r^{4}ρ^{2}  }{36}

Now let´s plug in the values we know:

  1. F = 1 lb     mutual gravitational attraction force
  2. G = 6.67(10)^{-11}     gravitational constant
  3. ρ_{iron} =491.5 \frac{lb}{ft^{3} }

  • 1= \frac{6.67(10)^{-11} \pi ^{2} r^{4} (491.5)^{2}}{36}

Solve for r and multiply by 2 because 2r = diameter

  • d=2\sqrt[4]{\frac{1}{7.07(10)^{-5} } }

Result is d = 21.81 Feet

6 0
3 years ago
(a) If a proton with a kinetic energy of 6.2 MeV is traveling in a particle accelerator in a circular orbit with a radius of 0.5
Tju [1.3M]

Answer:

The fraction of its energy that it radiates every second is 3.02\times10^{-11}.

Explanation:

Suppose Electromagnetic radiation is emitted by accelerating charges. The rate at which energy is emitted from an accelerating charge that has charge q and acceleration a is given by

\dfrac{dE}{dt}=\dfrac{q^2a^2}{6\pi\epsilon_{0}c^3}

Given that,

Kinetic energy = 6.2 MeV

Radius = 0.500 m

We need to calculate the acceleration

Using formula of acceleration

a=\dfrac{v^2}{r}

Put the value into the formula

a=\dfrac{\dfrac{1}{2}mv^2}{\dfrac{1}{2}mr}

Put the value into the formula

a=\dfrac{6.2\times10^{6}\times1.6\times10^{-19}}{\dfrac{1}{2}\times1.67\times10^{-27}\times0.51}

a=2.32\times10^{15}\ m/s^2

We need to calculate the rate at which it emits energy because of its acceleration is

\dfrac{dE}{dt}=\dfrac{q^2a^2}{6\pi\epsilon_{0}c^3}

Put the value into the formula

\dfrac{dE}{dt}=\dfrac{(1.6\times10^{-19})^2\times(2.3\times10^{15})^2}{6\pi\times8.85\times10^{-12}\times(3\times10^{8})^3}

\dfrac{dE}{dt}=3.00\times10^{-23}\ J/s

The energy in ev/s

\dfrac{dE}{dt}=\dfrac{3.00\times10^{-23}}{1.6\times10^{-19}}\ J/s

\dfrac{dE}{dt}=1.875\times10^{-4}\ ev/s

We need to calculate the fraction of its energy that it radiates every second

\dfrac{\dfrac{dE}{dt}}{E}=\dfrac{1.875\times10^{-4}}{6.2\times10^{6}}

\dfrac{\dfrac{dE}{dt}}{E}=3.02\times10^{-11}

Hence, The fraction of its energy that it radiates every second is 3.02\times10^{-11}.

5 0
3 years ago
A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 15.5 m bef
Dimas [21]

Supposing there's no air resistance, horizontal velocity is constant, which makes it very easy to solve for the amount of time that the rock was in the air.


Initial horizontal velocity is: <span>
cos(30 degrees) * 12m/s = 10.3923m/s 

15.5m / 10.3923m/s = 1.49s 

So the rock was in the air for 1.49 seconds. </span>

<span>

Now that we know that, we can use the following kinematics equation: 

d = v i * t + 1/2 * a * t^2 

Where d is the difference in y position, t is the time that the rock was in the air, and a is the vertical acceleration: -9.80m/s^2. </span>

<span>
Initial vertical velocity is sin(30 degrees) * 12m/s = 6 m/s 

So: 

d = 6 * 1.49 + (1/2) * (-9.80) * (1.49)^2 
d = 8.94 + -10.89</span>

d = -1.95<span>

<span>This means that the initial y position is 1.95 m higher than where the rock lands. </span></span>

5 0
3 years ago
If something is 50% efficient, how many joules of wasted energy will there be if 750J of energy is put in?
Andreas93 [3]

Answer:

<u><em>375 J</em></u>

Explanation:

<u><em>Total energy</em></u> = 750 J

<u><em>Efficiency</em></u> = 50%

<u><em>Wasted energy</em></u> = 50% [100% - 50%]

<u><em>Amount of wasted energy</em></u>

= 750 x 50%

= 750 x 0.5

= 375 J

7 0
2 years ago
Read 2 more answers
Why isn't the earth the same distance from sun all year long?
miskamm [114]

Answer:

Earth's orbit is elliptical

Explanation:

The earth's orbit is not a straight circle and the sun is not in the very center of it. The orbit is more of a wonky oval with the sun closer to one side of it than the other causing the earth's distance from the sun to vary throughout the year.

7 0
3 years ago
Read 2 more answers
Other questions:
  • A material you are testing conducts electricity but cannot be pulled into wires. It is most likely a _____.
    7·1 answer
  • The period of the earth around the sun is 1 year and its distance is 150 million km from the sun. An asteroid in a circular orbi
    13·1 answer
  • An object, which is initially at rest, accelerates at a rate of 10 m/s2 . Its final position is 85 m from its initial position a
    5·1 answer
  • Rutherford's atomic theory included which idea?
    13·1 answer
  • Which phrase best completes the following analogy? Health is to wellness as exercise is to _____. anxiety fatigue physical fitne
    5·2 answers
  • A spacecraft built in the shape of a sphere moves past an observer on the Earth with a speed of 0.500c. What shape does the obse
    13·1 answer
  • Describe briefly difference between conduction, convection, and radiation.
    15·1 answer
  • 2. A 15 kg mass fastened to the end of a steel wire of un-
    10·1 answer
  • 37. Which body exerts the strongest gravitational force on you?
    12·2 answers
  • 5. A single slit illuminated with a 500 nm light gives a diffraction pattern on a far screen. The 5th minimum occurs at 7.00° aw
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!