Answer
given,
range of the projectile = 4.3 m
time of flight = T = 0.829 s


v = 5.19 m/s
vertical component of velocity of projectile
v_y = gt'



a) Launch angle


θ = 38°
b) initial speed of projectile


v = 6.59 m/s
c) maximum height reached by the projectile



Because if you have a large population, there is a need for more food and water, but if you don't have enough food and water to support a large population, that limits it from happening
Answer:
20.42 N/m
Explanation:
From hook's law,
F = ke ......................... Equation 1
Where F = Force applied to the spring., k = spring constant, e = extension.
Make k the subject of the equation,
k = F/e ................. Equation 2
Note: The force on the spring is equal to the weight of the mass hung on it.
F = W = mg.
k = mg/e................ Equation 3
Given: m = 250 g = 0.25 kg, e = 37-25 = 12 cm = 0.12 m.
Constant: g = 9.8 m/s²
Substitute into equation 3
k = (0.25×9.8)/0.12
k = 20.42 N/m.
Hence the spring constant = 20.42 N/m
a. reflect (I found this using prior knowledge and process of illumination it can't be absorb cuz you wouldn't see anything it can't be refract because it doesn't reverse the image and it isn't transmit )