To solve this exercise it is necessary to apply the concepts related to Robert Boyle's law where:

Where,
P = Pressure
V = Volume
T = Temperature
n = amount of substance
R = Ideal gas constant
We start by calculating the volume of inhaled O_2 for it:


Our values are given as
P = 1atm
T=293K 
Using the equation to find n, we have:




Number of molecules would be found through Avogadro number, then


First example: book, m= 0.75 kg, h=1.5 m, g= 9.8 m/s², it has only potential energy Ep,
Ep=m*g*h=0.75*9.8*1.5=11.025 J
Second example: brick, m=2.5 kg, v=10 m/s, h=4 m, it has potential energy Ep and kinetic energy Ek,
E=Ep+Ek=m*g*h + (1/2)*m*v²=98 J + 125 J= 223 J
Third example: ball, m=0.25 kg, v= 10 m/s, it has only kinetic energy Ek
Ek=(1/2)*m*v²=12.5 J.
Fourth example: stone, m=0.7 kg, h=7 m, it has only potential energy Ep,
Ep=m*g*h=0.7*9.8*7=48.02 J
The order of examples starting with the lowest energy:
1. book, 2. ball, 3. stone, 4. brick
Answer:
22 degree
Explanation:
Angle of incidence, i = 30 degree
the refractive index of water with respect to air is 4/3.
As the ray of light travels from rarer medium to denser medium, that mean air to water, the refraction takes place.
According to Snell's law,
Refractive index of water with respect to air = Sin i / Sin r
Where, r be the angle of refraction
4 / 3 = Sin 30 / Sin r
0.75 = 2 Sin r
Sin r = 0.375
r = 22 degree
Thus, the angle of refraction is 22 degree.
Answer:
12.6 cm
Explanation:
We can use the mirror equation to find the distance of the image from the mirror:

where here we have
f = 9.50 cm is the focal length
p = 39 cm is the distance of the object from the mirror
Solving the equation for q, we find:
