Answer:
See explanation
Explanation:
We know that the process of the oxidation of SO2 to SO3 is catalysed by NO2 gas. It occurs in two stages and i will show the balanced reaction equation of the both stages below;
Step 1
2NO2(g) + 2SO2(g) ------> 2NO(g) + 2SO3(g)
Step 2
2NO(g) + O2(g) -------> 2NO2(g)
So, the overall reaction equation is;
2SO2(g) + O2(g) ------> 2SO3(g)
Lithium fluoride is the compound name
Answer:
B.) 1.3 atm
Explanation:
To find the new pressure, you need to use Gay-Lussac's Law:
P₁ / T₁ = P₂ / T₂
In this equation, "P₁" and "T₁" represent the initial pressure and temperature. "P₂" and "T₂" represent the final pressure and temperature. After converting the temperatures from Celsius to Kelvin, you can plug the given values into the equation and simplify to find P₂.
P₁ = 1.2 atm P₂ = ? atm
T₁ = 20 °C + 273 = 293 K T₂ = 35 °C + 273 = 308 K
P₁ / T₁ = P₂ / T₂ <----- Gay-Lussac's Law
(1.2 atm) / (293 K) = P₂ / (308 K) <----- Insert values
0.0041 = P₂ / (308 K) <----- Simplify left side
1.3 = P₂ <----- Multiply both sides by 308
Answer: 1.27 bar
Explanation:
1 atm = 1.01325 bar
1.25 atm = Z (let Z be the unknown value)
To get the value of Z, cross multiply
Z x 1 atm = 1.25 atm x 1.01325 bar
1 atm•Z = 1.2665625 atm•bar
To get the value of Z, divide both sides by 1 atm
1 atm•Z/1 atm = 1.2665625 atm•bar/1atm
Z = 1.2665625 bar
(Round up Z to the nearest hundredth as 1.27 bar)
Thus, 1.25 atm when coverted gives 1.27 bar
C = vf
c stands for the speed of waves (which is a constant that is 3 x 10^8)
v stands for the wavelength (which is given)
f stands for frequency (what we are solving for)
3 x 10^8 = (1.08 x 10^-6)f
Divide both sides by the given wavelength
f = 2.78 * 10^14 seconds