Answer:
Coefficient = 1.58
Exponent = - 5
Explanation:
pH = 2.95
Molar concentration = 0.0796M
Ka = [H+]^2 / [HA]
Ka = [H+]^2 / 0.0796
Therefore ;
[H+] = 10^-2.95
[H+] = 0.0011220 = 1.122 × 10^-3
Ka = [H+] / molar concentration
Ka = [1.122 × 10^-3]^2 / 0.0796
Ka = (1.258884 × 10^-6) / 0.0796
Ka = 15.815 × 10^-6
Ka = 1.58 × 10^-5
Coefficient = 1.58
Exponent = - 5
The empirical formula : CH₃
<h3>Further explanation</h3>
Given
2.5 g sample
2.002 g Carbon
Required
The empirical formula
Solution
Mass of Hydrogen :
= 2.5 - 2.002
= 0.498
Mol ratio C : H :
C : 2.002/12 = 0.167
H : 0.498/1 = 0.498
Divide by 0.167 :
C : H = 1 : 3
Maximum number of covalent bonds that an oxygen atom can make with hydrogen is 2.
- the ground state electronic configuration of oxygen is 2s² 2p⁴ that means it has 6 electrons in its valence shell and require two electrons are required to complete its octate.
- Two bonds are created when an electron donor atom shares the two needed electrons with oxygen. The ability of two oxygen atoms to share valence electrons results in the creation of a double bond between the two atoms.
- There are no longer any empty orbitals in the octet of oxygen after it is complete. As a result, it is unable to accept more electrons or create more bonds.
Therefore, Oxygen can only generate two bonds because it needs two additional electrons to complete its octet, after which it will run out of empty orbitals in which to receive additional electrons and create additional bonds.
learn more about octate here:
https://brainly.in/question/24161245
#SPJ4
Answer:
C₅H₁₀O₅
Explanation:
1. Calculate the mass of each element in 2.78 mg of X.
(a) Mass of C

(b) Mass of H

(c) Mass of O
Mass of O = 3.5 - 1.400 - 0.2349 = 1.87 g
2. Calculate the moles of each element

3. Calculate the molar ratios
Divide all moles by the smallest number of moles.

4. Round the ratios to the nearest integer
C:H:O = 1:2:1
5. Write the empirical formula
The empirical formula is CH₂O.
6. Calculate the molecular formula.
EF Mass = (12.01 + 2.016 + 16.00) u = 30.03 u
The molecular formula is an integral multiple of the empirical formula.
MF = (EF)ₙ

MF = (CH₂O)₅ = C₅H₁₀O₅
The molecular formula of X is C₅H₁₀O₅.
Hey there!:
HCl + MnO2 → MnCl2 + H2O + Cl2
* in HCl the oxidation state of Cl is -1 .
* on the product side the oxidation state is 0 .
* therefore Cl gains electrons .
* in MnO2 the oxidation state of Mn is +4
* in MnCl2 the oxidation state of Mn is +2
Therefore Mn loses electrons
Answer A
Hope That helps!