Assuming that the contents of the chamber ar ideal gases. We can use the relation PV=nRT. At a constant
temperature and number of moles of the gas the product of PV is equal to some
constant. At another set of condition of temperature, the constant is still the
same. Calculations are as follows:
P1V1 =P2V2
P2 = (1)(450)/ 48
P2 = 9.375 atm
Answer:
they are equal.
Explanation:
1 mol = 6.022 × 10^23 (Avogadro's constant), which is the number of atoms in 1 mol of any element. Doesn't matter what their atomic mass is, although, of course, 1 mol of carbon weighs less than 1 mol of calcium, but its because their mass is different, but the point is, in 1 mol of any element there is 6.03*10^23 atoms
This is like saying, what weighs more, 10 kg of feathers or 10 kg of metal
Answer:
Pangaea
Explanation:
About 300 Million Years Ago, Earth Didn't Have Seven Continents But Instead Earth Had One Massive Super continent Called Pangaea.
Answer:
The answer is b. The number of collisions of gas particles increases
Answer:
(a) Rate at which
is formed is 0.050 M/s
(b) Rate at which
is consumed is 0.0250 M/s.
Explanation:
The given reaction is:-

The expression for rate can be written as:-
![-\frac{1}{2}\frac{d[NO]}{dt}=-\frac{d[O_2]}{dt}=\frac{1}{2}\frac{d[NO_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNO%5D%7D%7Bdt%7D%3D-%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D)
Given that:-
(Negative sign shows consumption)
![-\frac{1}{2}\frac{d[NO]}{dt}=\frac{1}{2}\frac{d[NO_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNO%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D)
![-\frac{d[NO]}{dt}=\frac{d[NO_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BNO%5D%7D%7Bdt%7D%3D%5Cfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D)
![-(-0.050\ M/s)=\frac{d[NO_2]}{dt}](https://tex.z-dn.net/?f=-%28-0.050%5C%20M%2Fs%29%3D%5Cfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D)
![\frac{d[NO_2]}{dt}=0.050\ M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D%3D0.050%5C%20M%2Fs)
(a) Rate at which
is formed is 0.050 M/s
![-\frac{1}{2}\frac{d[NO]}{dt}=-\frac{d[O_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNO%5D%7D%7Bdt%7D%3D-%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D)
![-\frac{1}{2}\times -0.050\ M/s=-\frac{d[O_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20-0.050%5C%20M%2Fs%3D-%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D)
![\frac{d[O_2]}{dt}=0.0250\ M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D%3D0.0250%5C%20M%2Fs)
(b) Rate at which
is consumed is 0.0250 M/s.