The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
Answer:
All of the elements in a period have the same number of atomic orbitals. For example, every element in the top row (the first period) has one orbital for its electrons. All of the elements in the second row (the second period) have two orbitals for their electrons.
Explanation:
Sulphur Dioxide. Toxic. Don't eat it.
Answer:
![[Pb^{2+}]=3.9 \times 10^{-2}M](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%3D3.9%20%5Ctimes%2010%5E%7B-2%7DM)
this is the concentration required to initiate precipitation
Explanation:
⇄
Precipitation starts when ionic product is greater than solubility product.
Ip>Ksp
Precipitation starts only when solution is supersaturated because solution become supersaturated then it does not stay in this form and precipitation starts itself only solution become saturated.
This usually happens when two solutions containing separate sources of cation and anion are mixed together and here also we are mixing lead (||)nitrate solution(source of lead(||)) into the Cl- solution.
![Ip=[Pb^{2}][2Cl^-]^2=Ksp](https://tex.z-dn.net/?f=Ip%3D%5BPb%5E%7B2%7D%5D%5B2Cl%5E-%5D%5E2%3DKsp)

lets solubility=S
![[Pb^{2+}] = S](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%20%3D%20S)
![[Cl^-]=2S](https://tex.z-dn.net/?f=%5BCl%5E-%5D%3D2S)
![Ksp=[Pb^{2+}]\times [Cl^-]^2](https://tex.z-dn.net/?f=Ksp%3D%5BPb%5E%7B2%2B%7D%5D%5Ctimes%20%5BCl%5E-%5D%5E2)


![S=\sqrt[3]{\frac{Ksp}{4} }](https://tex.z-dn.net/?f=S%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BKsp%7D%7B4%7D%20%7D)

this is the concentration required to initiate precipitation
Answer:
Explanation: C is the answer