Number 19 is frequency and not sure which question you asked!!!??
Qualitative data gives the information of quality which can not be measured in numbers. For example: Color of eyes, softness of skin.
Quantitative data is information of quantity that can be represented in numbers. For example length and mass of any object.
Zinc is a silver-gray metal is a qualitative data, here silver gray color is quality of zinc metal which can not be measured in numbers.
Chlorine has a density of 3.2 g/L is a quantitative data. The value of density can be compared with other elements by comparing the numbers.
Gallium is not found in nature is neither qualitative nor quantitative.
Nitrogen has a melting point of –210.00 °C is a quantitative data because this is expressed in numbers.
Aluminum is a solid is a qualitative data because it tells about the state of element which can not be measured in numbers.
The Professor's centripetal acceleration is 0.044 m/s²
Centripetal acceleration is the acceleration of an object moving in circular motion. It is usually directed towards the center of the rotation.
It is given by:
a = v²/r
where v is the velocity and r is the radius.
Given that the radius (r) = 4 m, velocity (v) = 0.419 m/s, hence:
a = v²/r = 0.419²/4 = 0.044 m/s²
The Professor's centripetal acceleration is 0.044 m/s²
Find out more at: brainly.com/question/6082363
Answer:
15 watt
Explanation:
Power is the rate at which work is done.
This means you divide the work done with the amount of time used to perform the work.
The formula for Power is : P = W/t where;
W= work done in J = 45
t= time in seconds = 3 sec
P= 45/ 3 = 15 watt
Answer:
a) The rotational inertia when it passes through the midpoints of opposite sides and lies in the plane of the square is 16.8 kg m²
b) I = 50.39 kg m²
c) I = 16.8 kg m²
Explanation:
a) Given data:
m = 0.98 kg
a = 4.14 * 4.14
The moment of inertia is:

For 4 particles:

b) Distance from top left mass = x = a/2
Distance from bottom left mass = x = a/2
Distance from top right mass = x = √5 (a/2)
The total moment of inertia is:

c)
