1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maria [59]
3 years ago
11

A constant force of 2.5 N to the right acts on a 4.5 kg mass for 0.90 s.

Physics
1 answer:
Alborosie3 years ago
8 0

Answer:

(a) v_f=0.5\frac{m}{s}

(b) v_f=-11\frac{m}{s}

Explanation:

(a) Since a constant external force is applied to the body, it is under an uniformly accelerated motion. Using the following kinematic equation, we calculate the final velocity of the mass  if it is initially at rest(v_0=0):

v_f=v_0+at\\v_f=at(1)

According to Newton's second law:

F=ma\\a=\frac{F}{m}(2)

Replacing (2) in (1):

v_f=\frac{F}{m}t\\v_f=\frac{2.5N}{4.5kg}(0.9s)\\v_f=0.5\frac{m}{s}

(b) In this case we have v_0=-11.5\frac{m}{s}. So, we use the final velocity equation:

v_f=v_0+at\\v_f=v_0+\frac{F}{m}t\\v_f=-11.5\frac{m}{s}+\frac{2.5N}{4.5kg}(0.9s)\\v_f=-11\frac{m}{s}

You might be interested in
A) Charge q1 = +5.60 nC is on the x-axis at x = 0 and an unknown charge q2 is on the x-axis at x = -4.00 cm. The total electric
jeka94

Answer:

a) F₃₁ = 63.0 μN  

b) F₃₂ = - 14.0 μN

c) q₂ = - 5.0 nC

Explanation:

a)

  • Assuming that the three charges can be taken as point charges, the forces between them must obey Coulomb's Law, and can be found independent each other, applying the superposition principle.
  • So, we can find the force that q₁ exerts along the x-axis on q₃, as follows:

       F_{31} =\frac{k*q_{1}*q_{3} }{r_{13}^{2}} = \frac{9e9Nm2/C2*5.6e-9C*2.0e-9C}{(0.04m)^{2}}  = 63.0 \mu N   (1)

b)

  • Since total force exerted by q₁ and q₂ on q₃ is 49.0 μN, we can find the force exerted only by q₂ (which is along the x-axis only too) just by difference, as follows:

      F_{32} = F_{3} - F_{31}  = 49.0\mu N  - 63.0\mu N = -14.0 \mu N  (2)

c)

  • Finally, in order to find the value of q₂, as we know the value and sign of F₃₂, we can apply again the Coulomb's Law, solving for q₂, as follows:

      q_{2}  = \frac{F_{32} * r_{23}^{2} }{k*q_{3}} = \frac{(-14\mu N)*(0.08m)^{2}}{9e9Nm2/C2* 2 nC} = - 5 nC  (3)

6 0
2 years ago
A piece of metal has attained a velocity of 107.8 m/sec after fallinf for 10 seconds what is its initial velocity
soldi70 [24.7K]

Answer:

7.8 m/s

Explanation:

Here object is falling with a gravitational acceleration there  for we can take acceleration = 10 m/ s² and its constant through out the motion there for we can use motion equation

V = U + at

V - Final velocity

U - Initial velocity

a - acceleration

t - time

V=U+at

107.8=U + 10×10

  = 7.8 m/s

4 0
3 years ago
What happens to the temperature of a gas when it is compressed? a the temperature does not change. b the temperature increases.
nasty-shy [4]
I think the temperature increases
5 0
3 years ago
Read 2 more answers
7.22 Ignoring reflection at the air–water boundary, if the amplitude of a 1 GHz incident wave in air is 20 V/m at the water surf
Serga [27]

Answer:

z = 0.8 (approx)

Explanation:

given,

Amplitude of 1 GHz incident wave in air = 20 V/m

Water has,

μr = 1

at 1 GHz, r = 80 and σ = 1 S/m.

depth of water when amplitude is down to  1 μV/m

Intrinsic impedance of air = 120 π  Ω

Intrinsic impedance of  water = \dfrac{120\pi}{\epsilon_r}

Using equation to solve the problem

  E(z) = E_0 e^{-\alpha\ z}

E(z) is the amplitude under water at z depth

E_o is the amplitude of wave on the surface of water

z is the depth under water

\alpha = \dfrac{\sigma}{2}\sqrt{\dfrac{(120\pi)^2}{\Epsilon_r}}

\alpha = \dfrac{1}{2}\sqrt{\dfrac{(120\pi)^2}{80}}

\alpha =21.07\ Np/m

now ,

  1 \times 10^{-6} = 20 e^{-21.07\times z}

  e^{21.07\times z}= 20\times 10^{6}

taking ln both side

21.07 x z = 16.81

z = 0.797

z = 0.8 (approx)

5 0
3 years ago
Does sunlight really take 8 minutes to reach your eyes?
Brums [2.3K]
It takes sunlight 8 minutes to reach earth , so yes
3 0
3 years ago
Read 2 more answers
Other questions:
  • A wood block is sliding up a wood ramp. if the ramp is very steep, the block will reverse direction at its highest point and sli
    14·1 answer
  • Why is the sky blue all the time
    14·1 answer
  • A ray of white light moves through the air and strikes the surface of water in a beaker. The index of refraction of the water is
    9·1 answer
  • Water and cooking oil have the same density because they're both liquids. <br> TRUE OR FALSE
    9·2 answers
  • A positive charge, q1, of 5 µC is 3 × 10–2 m west of a positive charge, q2, of 2 µC. What is the magnitude and direction of the
    7·1 answer
  • Ondrea could drive a Jetson's flying car at a constant speed of 540.0 km/hr across oceans and space, approximately how long woul
    13·1 answer
  • What acceleration results from exerting a 125N force on a 0.65kg ball?
    15·1 answer
  • Check the attached image for the question~
    12·1 answer
  • When a person holds a ball above earth's surface, where is this potential energy stored?​
    7·1 answer
  • How do the nuclei of covalently bonded atoms help keep the bond together.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!