1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
notsponge [240]
3 years ago
10

True or falseenergy can neither be created nor be destroyed​

Physics
2 answers:
Rom4ik [11]3 years ago
5 0

Energy can be changed from one form to another, but it cannot be created or destroyed. The total amount of energy and matter in the Universe remains constant, merely changing from one form to another. ... In essence, energy can be converted from one form into another.

So , the answer is true

muminat3 years ago
4 0

Answer:

the correct answer is TRUE

Hope it helps you

have a nice day

You might be interested in
Determine the slope of end a of the cantilevered beam. E = 200 gpa and i = 65. 0(106) mm4
DENIUS [597]

For E = 200 gpa and i = 65. 0(106) mm4,  the slope of end a of the cantilevered beam  is mathematically given as

A=0.0048rads

<h3>What is the slope of end a of the cantilevered beam?</h3>

Generally, the equation for the   is mathematically given as

A=\frac{PL^2}{2EI}+\frac{ML}{EI}

Therefore

A=\frac{10+10^2+3^2}{2*240*10^9*65*10^6}+\frac{10+10^3*3}{240*10^9*65*10^{-6}}

A=0.00288+0.00192=0.0048rads

A=0.0048rads

In conclusion,  the slope is

A=0.0048rads

Read more about Graph

brainly.com/question/14375099

5 0
2 years ago
An alpha particle (a helium nucleus, consisting of two protons and two neutrons) has a radius of approximately 1.6 × 10-15 m. A
Snezhnost [94]

Answer:

9.96x10^-20 kg-m/s

Explanation:

Momentum p is the product of mass and velocity, i.e

P = mv

Alpha particles, like helium nuclei, have a net spin of zero. Due to the mechanism of their production in standard alpha radioactive decay, alpha particles generally have a kinetic energy of about 5 MeV, and a velocity in the vicinity of 5% the speed of light.

From this we calculate the speed as

v = 5% 0f 3x10^8 m/s (speed of light)

v = 1.5x10^7 m/s

The mass of an alpha particle is approximately 6.64×10−27 kg

Therefore,

P = 1.5x10^7 x 6.64×10^−27

P = 9.96x10^-20 kg-m/s

8 0
3 years ago
5.
White raven [17]

Answer:

The direction of defliection of the site to the left I think ..

4 0
3 years ago
Sphere A of mass 0.600 kg is initially moving to the right at 4.00 m/s. sphere B, of mass 1.80 kg is initially to the right of s
anzhelika [568]

A) The velocity of sphere A after the collision is 1.00 m/s to the right

B) The collision is elastic

C) The velocity of sphere C is 2.68 m/s at a direction of -5.2^{\circ}

D) The impulse exerted on C is 4.29 kg m/s at a direction of -5.2^{\circ}

E) The collision is inelastic

F) The velocity of the center of mass of the system is 4.00 m/s to the right

Explanation:

A)

We can solve this part by using the principle of conservation of momentum. The total momentum of the system must be conserved before and after the collision:

p_i = p_f\\m_A u_A + m_B u_B = m_A v_A + m_B v_B

m_A = 0.600 kg is the mass of sphere A

u_A = 4.00 m/s is the initial velocity of the sphere A (taking the right as positive direction)

v_A is the final velocity of sphere A

m_B = 1.80 kg is the mass of sphere B

u_B = 2.00 m/s is the initial velocity of the sphere B

v_B = 3.00 m/s is the final velocity of the sphere B

Solving for vA:

v_A = \frac{m_A u_A + m_B u_B - m_B v_B}{m_A}=\frac{(0.600)(4.00)+(1.80)(2.00)-(1.80)(3.00)}{0.600}=1.00 m/s

The sign is positive, so the direction is to the right.

B)

To verify if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

Before the collision:

K_i = \frac{1}{2}m_A u_A^2 + \frac{1}{2}m_B u_B^2 =\frac{1}{2}(0.600)(4.00)^2 + \frac{1}{2}(1.80)(2.00)^2=8.4 J

After the collision:

K_f = \frac{1}{2}m_A v_A^2 + \frac{1}{2}m_B v_B^2 = \frac{1}{2}(0.600)(1.00)^2 + \frac{1}{2}(1.80)(3.00)^2=8.4 J

The total kinetic energy is conserved: therefore, the collision is elastic.

C)

Now we analyze the collision between sphere B and C. Again, we apply the law of conservation of momentum, but in two dimensions: so, the total momentum must be conserved both on the x- and on the y- direction.

Taking the initial direction of sphere B as positive x-direction, the total momentum before the collision along the x-axis is:

p_x = m_B v_B = (1.80)(3.00)=5.40 kg m/s

While the total momentum along the y-axis is zero:

p_y = 0

We can now write the equations of conservation of momentum along the two directions as follows:

p_x = p'_{Bx} + p'_{Cx}\\0 = p'_{By} + p'_{Cy} (1)

We also know the components of the momentum of B after the collision:

p'_{Bx}=(1.20)(cos 19)=1.13 kg m/s\\p'_{By}=(1.20)(sin 19)=0.39 kg m/s

So substituting into (1), we find the components of the momentum of C after the collision:

p'_{Cx}=p_B - p'_{Bx}=5.40 - 1.13=4.27 kg m/s\\p'_{Cy}=p_C - p'_{Cy}=0-0.39 = -0.39 kg m/s

So the magnitude of the momentum of C is

p'_C = \sqrt{p_{Cx}^2+p_{Cy}^2}=\sqrt{4.27^2+(-0.39)^2}=4.29 kg m/s

Dividing by the mass of C (1.60 kg), we find the magnitude of the velocity:

v_c = \frac{p_C}{m_C}=\frac{4.29}{1.60}=2.68 m/s

And the direction is

\theta=tan^{-1}(\frac{p_y}{p_x})=tan^{-1}(\frac{-0.39}{4.27})=-5.2^{\circ}

D)

The impulse imparted by B to C is equal to the change in momentum of C.

The initial momentum of C is zero, since it was at rest:

p_C = 0

While the final momentum is:

p'_C = 4.29 kg m/s

So the magnitude of the impulse exerted on C is

I=p'_C - p_C = 4.29 - 0 = 4.29 kg m/s

And the direction is the angle between the direction of the final momentum and the direction of the initial momentum: since the initial momentum is zero, the angle is simply equal to the angle of the final momentum, therefore -5.2^{\circ}.

E)

To check if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

The total kinetic energy before the collision is just the kinetic energy of B, since C was at rest:

K_i = \frac{1}{2}m_B u_B^2 = \frac{1}{2}(1.80)(3.00)^2=8.1 J

The total kinetic energy after the collision is the sum of the kinetic energies of B and C:

K_f = \frac{1}{2}m_B v_B^2 + \frac{1}{2}m_C v_C^2 = \frac{1}{2}(1.80)(1.20)^2 + \frac{1}{2}(1.60)(2.68)^2=7.0 J

Since the total kinetic energy is not conserved, the collision is inelastic.

F)

Here we notice that the system is isolated: so there are no external forces acting on the system, and this means the system has no acceleration, according to Newton's second law:

F=Ma

Since F = 0, then a = 0, and so the center of mass of the system moves at constant velocity.

Therefore, the centre of mass after the 2nd collision must be equal to the velocity of the centre of mass before the 1st collision: which is the velocity of the sphere A before the 1st collision (because the other 2 spheres were at rest), so it is simply 4.00 m/s to the right.

Learn more about momentum and collisions:

brainly.com/question/6439920

brainly.com/question/2990238

brainly.com/question/7973509

brainly.com/question/6573742

#LearnwithBrainly

8 0
3 years ago
Describing a Physical Change
babymother [125]

Answer:

physical change is the temporary change or riversible change here the physical properties r only changed

for example when water is cooled its get freezed Nd becomes ice similarly wen ice is heated again then it becomes water so here it's not changed permanently

I hope my ans is comprehensive

plz add me in brainliest Nd plz plz plz follow me I request u

6 0
3 years ago
Other questions:
  • As Luke rides his bike down a hill, potential energy is converted to kinetic energy. What is this an example of?
    12·1 answer
  • While driving north at 21 m/s during a rainstorm you notice that the rain makes an angle of 36° with the vertical. while drivin
    6·1 answer
  • When is an atom stable? A. when it has a full outer orbit. B. when it has the same amount of elections as protons. C. when it ha
    11·2 answers
  • Incoming sensory messages are made sense of in
    13·1 answer
  • Please help!
    15·2 answers
  • A ball at rest rolls across a frictionless floor at 12.0 m/s/s. How far will it travel in
    5·1 answer
  • Tasha rolls a 7.0 bowling ball down down the alley for the league championship. One pin is still standing, and Jeanne hits it he
    15·1 answer
  • In a thermos bottle, the vacuum between two glass bottles prevents heat being conducted between the bottles. T or F
    15·2 answers
  • A 1200 kg car accelerats from reat to 10.0 m/s in a time of 4.50 seconds. Calculate the force that thr car's tires exerted on th
    9·1 answer
  • 2. Compare and Contrast A fault cuts through
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!