Okay thanks for the update I will give you a call when you get home thanks
Answer: 2800 calories
Explanation:
Latent heat of fusion is the amount of heat required to convert 1 mole of solid to liquid at atmospheric pressure.
Amount of heat required to fuse 1 gram of water = 80 cal
Mass of ice given = 35 gram
Heat required to fuse 1 g of ice at
= 80 cal
Thus Heat required to fuse 35 g of ice =
Thus 2800 calories of energy is required to melt 35 g ice cube
Metals :-
Group 1A - Alkali metals ( highly reactive metals)
Non-metals :-
Group 17 - Halogens ( highly reactive non-metals )
The third question requires you to solve for the weight of sodium (Na) and weight of Chloride (Cl) from the calculated moles of each element Na, and Cl.
So, you need to multiply the calculated moles of Na with its molar mass (23 g/ mol) to get the answer for Na. And multiply the calculated moles of Cl with its molar mass (35.45 g/mol) to get the answer for Cl.
Answer:
c. 2NH₃ + 2H₂O + Cu²⁺ → Cu(OH)₂(s) + 2NH₄⁺
Explanation:
A net ionic equation is a chemical equation that list only the species that are involved in the reaction.
The reaction of ammonia with copper(II) sulfate CuSO₄ in water is:
2NH₃ + 2H₂O + CuSO₄ → Cu(OH)₂(s) + 2NH₄⁺ + SO₄²⁻
In an ionic equation, salts are written as ions, that means CuSO₄ must be written as Cu²⁺ + SO₄²⁻. That is:
2NH₃ + 2H₂O + Cu²⁺ +<u> SO₄²⁻</u> → Cu(OH)₂(s) + 2NH₄⁺ + <u>SO₄²⁻</u>
As in a net ionic equation you must list only the species involved in the reaction (The underlined species don't react), the net ionic equation is:
<em>c</em>. <em>2NH₃ + 2H₂O + Cu²⁺ → Cu(OH)₂(s) + 2NH₄⁺</em>
<em></em>
I hope it helps!