If a plant cell had a mutation such that the cyclic electron flow is observed at a much higher rate, which photosystem is most likely mutated such that energy is absorbed at a lower rate?
PSI
PSII
Answer:
PSII
Explanation:
Non-cyclic phosphorylation involves both PSI and PSII. The process starts with the splitting of water and excitation of electrons of the reaction center of PSII upon the absorption of solar energy at the wavelength of 680 nm. Any mutation in PSII would not allow the non-cyclic phosphorylation to occur when only cyclic phosphorylation would occur. The process of cyclic phosphorylation includes only PS I. Its reaction center absorbs maximum light at 700 nm and is cycled back while supporting ATP synthesis. Therefore, if a plant performs cyclic phosphorylation at a higher rate and absorbs less energy, this means that mutation was in PSII.
Episodic Memory!
Episodic memory includes personal information on what happened and where.
Hope this helps!
A.
conserve energy
The smaller muscle mass of the sloth, means that it needs less energy to work, allowing it to be able to survive on a less diet.
Most of their muscles are concentrated in their upper body, allowing them to be efficient climbers but very slow on the ground.