Momentum = (mass) x (velocity)
Original momentum before the hit =
(0.16 kg) x (38 m/s) this way <==
= 6.08 kg-m/s this way <==
Momentum after the hit =
(0.16) x (44 m/s) that way ==>
= 7.04 kg-m/s that way ==>
Change in momentum = (6.08 + 7.04) = 13.12 kg-m/s that way ==> .
-----------------------------------------------
Change in momentum = impulse.
Impulse = (force) x (time the force lasted)
13.12 kg-m/s = (force) x (0.002 sec)
(13.12 kg-m/s) / (0.002 sec) = Force
6,560 kg-m/s² = 6,560 Newtons = Force
( about 1,475 pounds ! ! ! )
Answer:
The correct answer is option'B': Change in entropy
Explanation:
We know from the second law of thermodynamics for any spontaneous process the total entropy of the system and it's surroundings will increase.
Meaning that any unaided process will move in a direction in which the entropy of the system will increase.It is because the system will always want to increase it's randomness
Answer:
12.17 m/s²
Explanation:
The formula of period of a simple pendulum is given as,
T = 2π√(L/g)........................ Equation 1
Where T = period of the simple pendulum, L = length of the simple pendulum, g = acceleration due to gravity of the planet. π = pie
making g the subject of the equation,
g = 4π²L/T²................... Equation 2
Given: T = 1.8 s, l = 1.00 m
Constant: π = 3.14
Substitute into equation 2
g = (4×3.14²×1)/1.8²
g = 12.17 m/s²
Hence the acceleration due to gravity of the planet = 12.17 m/s²
Answer:
the distance traveled by the fish is 3648 m
Explanation:
In general, animals have a small period of acceleration, which we will despise after which they travel at a constant speed so we can use the kinematic equations in uniform motion
We reduce the units to System SI
t = 2 min (60s / 1 min) = 120 s
Calculate
V = x / t
x= V t
x = 30.4 120
x = 3648 m
This is the distance traveled by the fish